精英家教网 > 初中数学 > 题目详情
(2013•抚顺)已知圆锥底面圆的半径为2,母线长是4,则它的全面积为(  )
分析:首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.
解答:解:底面周长是:2×2π=4π,
则侧面积是:
1
2
×4π×4=8π,
底面积是:π×22=4π,
则全面积是:8π+4π=12π.
故选C.
点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•抚顺)如图,等边△OAB的边OB在x轴的负半轴上,双曲线y=
k
x
过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)已知a、b为两个连续整数,且a<
17
<b,则a+b=
9
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.
(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

同步练习册答案