已知抛物线y=ax 2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)若点D(m,m+1)在第一象限的抛物线上, 求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连结BD,若点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
解:(1)抛物线经过,两点,
解得
抛物线的解析式为.
(2)点在抛物线上,.
∴. 或.
点D在第一象限,舍去.
点D的坐标为.
抛物线与轴的另一交点的坐标为,,
∴.
设点关于直线的对称点为点.
,
.
∴E点在轴上,且.
∴OE=1.
.
即点关于直线对称的点的坐标为(0,1).
(3)过点作的垂线交直线于点,过点作轴于,过点作于.
∴..
.
,,
.
. ,.
.
设直线的解析式为.
由点,点,求得直线的解析式为.
解方程组
得 (舍)
点的坐标为.
【解析】(1)由抛物线经过A(-1,0)、C(0,4)两点,利用待定系数法即可求得抛物线的解析式;
(2)由点在抛物线上,即可求得点D的坐标,则可求得∠CBO的度数,设点关于直线的对称点为点,即可求得点的坐标;
(3)过点作的垂线交直线于点,过点作轴于,过点作于.先证得,设出直线的解析式,由点,点,根据待定系数法求得直线的解析式为,再与二次函数解析式一起组成方程组即可得到点P的坐标。
科目:初中数学 来源: 题型:
已知抛物线y=ax 2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)若点D(m,m+1)在第一象限的抛物线上, 求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连结BD,若点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年湖南省祁阳县浯溪镇二中九年级下学期第一次月考考试数学卷 题型:单选题
.(13分)已知抛物线y=ax 2+bx+c经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交抛物线于点C.动点E、F分别从O、A两点同时出发,其中点E沿线段OA以每秒1个单位长度的速度向A点运动,点F沿折线A→B→C以每秒1个单位长度的速度向C点运动.设动点运动的时间为t(秒).
(1)求抛物线的解析式;
(2)记△EFA的面积为S,求S关于t的函数关系式,并求S的最大值,指出此时△EFA的形状;
(3)是否存在这样的t值,使△EFA是直角三角形?若存在,求出此时E、F两点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2012届北京师大附中九年级上学期期中考试数学卷 题型:解答题
已知抛物线y=ax+bx+c与轴交于两点,若两点的横坐标分别是一元二次方程的两个实数根,与轴交于点(0,3),
【小题1】(1)求抛物线的解析式;
【小题2】(2)在此抛物线上求点,使.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年北京师大附中九年级上学期期中考试数学卷 题型:解答题
已知抛物线y=ax+bx+c与轴交于两点,若两点的横坐标分别是一元二次方程的两个实数根,与轴交于点(0,3),
1.(1)求抛物线的解析式;
2.(2)在此抛物线上求点,使.
查看答案和解析>>
科目:初中数学 来源:2012届湖南省九年级下学期第一次月考考试数学卷 题型:选择题
.(13分)已知抛物线y=ax 2+bx+c经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交抛物线于点C.动点E、F分别从O、A两点同时出发,其中点E沿线段OA以每秒1个单位长度的速度向A点运动,点F沿折线A→B→C以每秒1个单位长度的速度向C点运动.设动点运动的时间为t(秒).
(1)求抛物线的解析式;
(2)记△EFA的面积为S,求S关于t的函数关系式,并求S的最大值,指出此时△EFA的形状;
(3)是否存在这样的t值,使△EFA是直角三角形?若存在,求出此时E、F两点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com