精英家教网 > 初中数学 > 题目详情

【题目】中,,点出发沿方向在运动速度为3个单位/秒,点出发向点运动,速度为1个单位/秒,同时出发,点到点时两点同时停止运动.

1)点在线段上运动,过交边时,求的值;

2)运动秒后,,求此时的值;

3________时,

【答案】12;(2;(3

【解析】

1)如图1中,作,利用勾股定理求出AC=10,根据,得到,求出,证明四边形是矩形,得到,证明,得到

2)作,根据,得到,求出,再证明,得到,即可求出

3)如图3中作,证明,求出,利用得到,根据即可列式求出t.

1)如图1中,作

AC=10

∴四边形是矩形,

2)如图2中,作

3)如图3中作

整理得:

解得(或舍弃).

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后坝底增加的宽度AF的长;

(2)求完成这项工程需要土石多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB10cmE为对角线BD上一动点,连接AECE,过E点作EFAE,交直线BC于点FE点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2E点的运动时间为x秒.

1)求证:CEEF

2)求yx之间关系的函数表达式,并写出自变量x的取值范围;

3)求△BEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钟南山院士在谈到防护新型冠状病毒肺炎时说:我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:

收集数据

甲小区:80 85 90 95 90 95 90 65 75 100 90 70 95 90 80 80 90 95 60 100

乙小区:60 80 95 80 90 65 80 85 85 100 80 95 90 80 90 70 80 90 75 100

整理数据

成绩(分)

小区

甲小区

乙小区

分析数据

数据名称

计量小区

平均数

中位数

众数

甲小区

乙小区

应用数据

1)填空:=______=______

2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;

3)社区管理人员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传新型冠状病毒肺炎防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.

1)求甲、乙两工程队每天绿化的面积分别是多少m2

2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为 0.2万元,若要使这次的绿化总费用不超过10万元,则至少应安排甲工程队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在离水面高度AC为2米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒05米的速度收绳子

问:1未开始收绳子的时候,图中绳子BC的长度是多少米?

2收绳2秒后船离岸边多少米?结果保留根号

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山的速度是   米/分钟,乙在A地提速时距地面的高度b为   米.

(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y和x之间的函数关系式.

(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂计划招聘两个工种的工人共120人,两个工种的工人月工资分别为3200元和4000元.

1)若某工厂每月支付工人的工资为440000元,那么两个工种的工人各招聘多少人?设招聘工种的工人人,填写下表,并列方程求解;

工种

工人每月工资(元)

招聘人数

工厂应付工人的

工资(元)

3200

4000

2)设工厂每月支付工人的工资为元,试写出之间的函数表达式,若要求工种的人数不少于工种人数的2倍,那么招聘工种的工人多少人时,可使工厂每月支付的工人工资最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂以每千克200元的价格购进甲种原料360千克,用于生产AB两种产品,生产1A产品或1B产品所需甲、乙两种原料的千克数如下表:

产品/原料

A

B

甲(千克)

9

4

乙(千克)

3

10

乙种原料的价格为每千克300元,A产品每件售价3000元,B产品每件售价4200元,现将甲种原料全部用完,设生产A产品x件,B产品m件,公司获得的总利润为y元.

1)写出mx的关系式;

2)求yx的关系式;

3)若使用乙种原料不超过510千克,生产A种产品多少件时,公司获利最大?最大利润为多少?

查看答案和解析>>

同步练习册答案