精英家教网 > 初中数学 > 题目详情
12、探究题
如图,A(3,2),B(-3,2),C(3,0),
(1)在直角坐标系中,画出点A,B,C关于原点的对称点A′,B′,C′;
(2)点A(3,2)关于原点的对称点为A′(
-3,-2
),
点B(-3,2)关于原点的对称点为B′(
3,-2
),
点C(3,0)关于原点的对称点为C′(
-3,0
);
(3)你发现点P(x,y)关于原点的对称点P′(
-x,-y
).
分析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,从而得出A′,B′,C′P′,在在图象上画出各点的位置.
解答:解:(1)如图:
解:(2)根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,
∴点A(3,2)关于原点的对称点为A′为(-3,-2),
点B(-3,2)关于原点的对称点为B′为(3,-2),
点C(3,0)关于原点的对称点为C′为(-3,0);
解:(3)根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,
点P(x,y)关于原点的对称点P′为(-x,-y).
点评:本题主要考查了平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探究题
如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中按a次幂从大到小排列的项的系数.规定任何非零数的零次幂为1,如(a+b)0=1.例如,
(a+b)1=a+b展开式中的系数1、1恰好对应图中第二行的数字;
(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;
(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.
(1)请认真观察此图,写出(a+b)4的展开式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

(2)类似地,请你探索并画出(a-b)0,(a-b)1,(a-b)2,(a-b)3的展开式中按a次幂从大到小排列的项的系数对应的三角形.
(3)探究解决问题:已知a+b=3,a2+b2=5,求ab的值.

查看答案和解析>>

科目:初中数学 来源:2012届江苏江阴南菁中学九年级中考适应性训练数学试卷(带解析) 题型:解答题

在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.
【小题1】第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

【小题2】第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

【小题3】探究活动结束后,老师给大家留下了一道探究题:如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省无锡市新区九年级二模数学卷(带解析) 题型:解答题

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组的同学发现,在如图1-1的矩形ABCD中,ACBD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程 ▲ 
(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BABC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,判断以ADAFAH为三边能否构成三角形?若能构成,请判断这个三角形的形状,若不能构成,请说明理由.

(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'的大小关系.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏江阴南菁中学九年级中考适应性训练数学试卷(解析版) 题型:解答题

在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

1.第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

2.第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

3.探究活动结束后,老师给大家留下了一道探究题:如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.

 

查看答案和解析>>

同步练习册答案