精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,求抛物线的解析式;
(3)在(2)条件下,点P(不与A、C重合)是抛物线上的一点,点M是y轴上一点,当△BPM是等腰直角三角形时,求点M的坐标.
(1)∵抛物线y=-x2+bx+c与y轴正半轴交于B点,
∴点B的坐标为(0,c),
∵OA=OB,
∴点A的坐标为(-c,0),将点A(-c,0)代入y=y=-x2+bx+c,得-c2-bc+c=0,
∵c≠0,整理得b+c=1;

(2)如图,如果四边形OABC是平行四边形,那么COAB,BCAO,
∴点C的坐标可以表示为(c,c),
当点C(c,c)落在抛物线y=-x2+bx+c上时,得-c2+bc+c=c,
整理得b=c,
结合(1)问c+b=1,得b=c=
1
2

故此时抛物线的解析式为y=-x2+
1
2
x+
1
2


(3)△BPM是等腰直角三角形,设点P的坐标为(x,-x2+
1
2
x+
1
2
),
由BM=PM,列方程
1
2
-(-x2+
1
2
x+
1
2
)=x,解得x=
3
2
或x=0(舍去),
所以当x=
3
2
时,y=-(
3
2
)
2
+
1
2
×
3
2
+
1
2
=-1,
点M1的坐标为(0,-1),
同理当BP=PM时,求出M2点的坐标为(0,-
5
2
),
综上点M的坐标为(0,-1)或(0,-
5
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象经过点A(-4,0),B(-1,3),C(-3,3)
(1)求此二次函数的解析式;
(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在如图1所示的平面直角坐标系xOy中,A,C两点的坐标分别为A(2,3),C(n,-3)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.

(1)结合以上信息及图2填空:图2中的m=______;
(2)求B,C两点的坐标及图2中OF的长;
(3)在图1中,当动点P恰为经过O,B两点的抛物线W的顶点时,
①求此抛物线W的解析式;
②若点Q在直线y=-1上方的抛物线W上,坐标平面内另有一点R,满足以B,P,Q,R四点为顶点的四边形是菱形,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,半径为1的动圆P圆心在抛物线y=(x-2)2-1上,当⊙P与x轴相切时,点P的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂准备翻建新的厂门,厂门要求设计成轴对称的拱型曲线.已知厂门的最大宽度AB=12m,最大高度OC=4m,工厂的特种运输卡车的高度是3m,宽度是5.8m.现设计了两种方案:方案一:建成抛物线形状;方案二:建成圆弧形状(如图).为确保工厂的特种卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如图一所示的位置放置,点O与E重合.
(1)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点E运动到与点B重合时停止,设运动x秒后,Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(2)当Rt△CED以(1)中的速度和方向运动,运动时间x=2秒时,Rt△CED运动到如图二所示的位置,若抛物线y=
1
4
x2+bx+c过点A,G,求抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上运动,试问点P在运动过程中是否存在点P到x轴或y轴的距离为2的情况?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

改革开放后,不少农村用上了自动喷灌设备.如图所示,AB表示水管,在B处有一个自动旋转的喷水头,一瞬间喷出的水是抛物线状,建立如图所示的直角坐标系后,抛物线的表达式为y=-
1
2
x2+2x+
3
2

(1)当x=1时,喷出的水离地面多高?
(2)你能求出水的落地点距水管底部A的最远距离吗?
(3)水管有多高?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴于点C,点D为对称轴l上的一个动点.
(1)求当AD+CD最小时,点D的坐标;
(2)以点A为圆心,以AD为半径作⊙A
①证明:当AD+CD最小时,直线BD与⊙A相切.
②写出直线BD与⊙A相切时,D点的另一个坐标______.

查看答案和解析>>

同步练习册答案