精英家教网 > 初中数学 > 题目详情
18.如图两个圈分别表示正数集和整数集,请找出9个数填入这两个圈中,使其中每个圈正好6个数,你能说出这两个圈的重叠部分表示什么数的集合吗?

分析 根据有理数的概念填空即可.

解答 解:如图所示:

点评 本题考查的是有理数的概念,有理数包括整数和分数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.小芳从正面(图示“主视方向”)观察如图的热水瓶时,得到的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.观察下列单项式:x,-3x2,5x3,-7x4,9x5,…,按此规律,可以得到第2017个单项式表示为4033x2017,第n个单项式表示为(-1)n+1(2n-1)xn

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”?(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是x和y,由题意得方程组:$\left\{\begin{array}{l}{x+y=\frac{7}{2}}\\{xy=3}\end{array}\right.$,消去y化简得:2x2-7x+6=0,
∵△=49-48>0,∴x1=2,x2=$\frac{3}{2}$,
∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AB为⊙O的直径,CO⊥AB于点O,D在⊙O上,连接BD、CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.
(1)求证:FD是⊙O的切线;
(2)若AF=10,tan∠BDF=$\frac{1}{4}$,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=$\frac{1}{2}$∠BAD时,EF=BE+DF成立吗?请直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax-3a的图象与x轴交于A、B两点(点B在点A的右侧),交y轴于点C,且S△ABC=6
(1)求点a的值;
(2)点P是第一象限内抛物线上一点,AP交y轴正半轴于点D,点Q在射线BA上,且BQ-OA=2OD,设点P的横坐标为t,BQ的长度为d,求d与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)条件下,点E在y轴的负半轴上,OE=2OA,直线EQ交直线PC于点F,求t为何值时,FC=FQ.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:
(1)对称轴方程x=-1;
(2)a-b+c<0,4a+2b+c>0;(用“<”,“=”或“>”号连接)
(3)当x<-1时,y随x增大而减小;
(4)方程ax2+bx+c=0的解为x1=-3,x2=1;
(5)由图象回答:当y>0时,x的取值范围x<-3或x>1;当y=0时,x=-3或1;当y<0时,x的取值范围-3<x<1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列各式计算正确的有(  )
A.(p5q4)÷(2p3q)=2p2q3B.(-a+5)(-a-5)=-a2-25
C.$\frac{1}{a}+\frac{2}{a}=\frac{3}{2a}$D.$\frac{2a}{{{a^2}-4}}-\frac{1}{a-2}=\frac{1}{a+2}$

查看答案和解析>>

同步练习册答案