精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点A(a ,2)是直线y=x上一点,以A为圆心,2为半径作⊙A,若P(x,y)是第一象限内⊙A上任意一点,则的最小值为(

A. 1 B. C. —1 D.

【答案】D

【解析】分析: 如图所示,当直线OP与圆A相切时,连接AP,过PPHx轴,此时取得最小值,利用切线的性质得到AP垂直于OP,在直角三角形AOP中,根据到角两边距离相等的点在角的平分线上确定出∠AOP=30°,tan30°的值,求出即可.

详解: 如图所示,当直线OP与圆A相切时,连接AP,过PPHx轴,此时取得最大值,

A(a ,2)是直线y=x上一点,

∴a=2,

A(2 ,2).

A为圆心,2为半径作⊙A

Ay轴相切.

则当直线OP与圆A相切时, 取得最小值,

∵∠AOy=∠AOP=30°,

∴∠AOx=30°,

∴此时=tan30°=

的最小值为

故选:D.

点睛:

此题考查了切线的性质,坐标与图形性质,以及锐角三角函数定义,熟练掌握切线的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,射线OM上有三点A,B,C,满足OA=20cm,AB=60cm,BC=10cm,动点PO点出发沿OM方向以每秒1cm的速度匀速运动;动点Q从点C出发,在线段CO上向点O匀速运动(点Q运动到点O时,立即停止运动),点P,Q同时出发.

(1)当点P与点Q都同时运动到线段AB的中点时,求点Q的运动速度;

(2)若点Q运动速度为每秒3cm时,经过多少时间P,Q两点相距70cm;

(3)当PA=2PB时,点Q运动的位置恰好是线段AB的三等分,求点Q的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方法感悟:

1)如图①,在矩形ABCD中,AB=4AD=6AE=4AF=2,是否在边BCCD上分别存在点GH,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.

问题解决:

2)如图②,有一矩形板材ABCDAB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°EF=FG=米,∠EHG=45°,经研究,只有当点EFG分别在边ADABBC上,且AFBF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积,并写出在以B为坐标原点,直线BCx轴,直线BAy轴的坐标系中,点H的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上点A对应的数是﹣1B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.

1)求点C对应的数;

2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,依次规律爬下去,求它第10次爬行所停在点所对应的数;

3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点AEFB所对应的数分别是xAxExFxB,当运动时间t不超过1秒时,请你结合数轴求出 |xAxE ||xExF |+ |xFxB |= .(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克, =609千克,亩产量的方差分别是=29.6 =2.则关于两种小麦推广种植的合理决策是( )

A. 甲的平均亩产量较高,应推广甲

B. 甲、乙的平均亩产量相差不多,均可推广

C. 甲的平均亩产量较高,且亩产量比较稳定,应推广甲

D. 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AECF分别被直线EFAC所截,已知,∠1=∠2AB平分∠EACCD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.

证明:∵ ∠1="∠2" ( 已知 )

∴ AE∥

∴ ∠EAC =∠ ,(

AB平分∠EACCD平分∠ACG( 已知 )

∴∠ =∠EAC∠4= ( 角平分线的定义 )

∴∠ =∠4(等量代换)

∴AB∥CD ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上AB两点对应的数分别-48.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动

1)当运动到第2018次时,求点P所对应的有理数.

2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD,AE⊥BC,垂足为点E,CE=CD,FCE的中点GCD上的一点连接DF,EG,AG,∠1=∠2.

(1)CF=2,AE=3,BE的长;

(2)求证:∠CEG=∠AGE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市绿化部门决定利用现有的不同种类花卉搭配园艺造型,摆放于城区主要大道的两侧AB两种园艺造型均需用到杜鹃花,A种造型每个需用杜鹃花25盆,B种造型每个需用杜鹃花35盆,解答下列问题:

(1)已知人民大道两侧搭配的AB两种园艺造型共60个,恰好用了1700盆杜鹃花,AB两种园艺造型各搭配了多少个?

(2)如果搭配一个A种造型的成本W与造型个数的关系式为:W=100―x (0<x<50),搭配一个B种造型的成本为80现在观海大道两侧也需搭配AB两种园艺造型共50个,要求每种园艺造型不得少于20个,并且成本总额y(元)控制在4500元以内. 以上要求能否同时满足?请你通过计算说明理由.

查看答案和解析>>

同步练习册答案