精英家教网 > 初中数学 > 题目详情
已知点P坐标为(-a,b),那么点P关于y轴对称的点的坐标为(  )
分析:首先根据关于y轴对称时的坐标特点:它们的横坐标符号相反,进而得出答案.
解答:解:∵点P坐标为(-a,b),
∴点P关于y轴对称的点的坐标为:(a,-b).
故选:B.
点评:此题主要考查了关于y轴对称的点的坐标特征,解决问题的关键是熟记坐标变换的特点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,请用含m的代数式表示点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、(1)已知二次函数y=ax2+bx+c(a≠0)的图象开口向下,并经过点(-1,2),(1,0).下列命题其中一定正确的是
④⑤

(把你认为正确结论的序号都填上,少填或错填不给分).
①当x≥0时,函数值y随x的增大而增大
②当x≤0时,函数值y随x的增大而减小
③存在一个正数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小
④存在一个负数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小,
⑤a+2b>-2c
(2)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
请探索:是否存在这样的点M,使得线段PB最短;若存在,请求出此时点M的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,
(1)求C点的坐标;
精英家教网
(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP-DE的值;
精英家教网
(3)如图3,已知点F坐标为(-2,-2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m-n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A坐标为(-2,3),点A关于x轴的对称点为A′,则A′关于y轴对称点的坐标为(  )

查看答案和解析>>

同步练习册答案