精英家教网 > 初中数学 > 题目详情
20.解方程:$\frac{1}{2}$(1-y)-2y=8.

分析 方程去分母,去括号,移项合并,把y系数化为1,即可求出解.

解答 解:去分母得:1-y-4y=16,
移项合并得:5y=-15,
解得:y=-3.

点评 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM、DM.

(1)当点D在AB上,点E在AC上时(如图一),求证:DM=CM,DM⊥CM;
(2)当点D在CA延长线上时(如图二)(1)中结论仍然成立,请补全图形(不用证明);
(3)当ED∥AB时(如图三),上述结论仍然成立,请加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算(2-3)0是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,∠BAC=90°,AB=AC,在BC的同侧作任意Rt△DBC,∠BDC=90°.
(1)若CD=2BD,M是CD中点(如图1),求证:△ADB≌△AMC;

下面是小明的证明过程,请你将它补充完整:
证明:设AB与CD相交于点O,
∵∠BDC=90°,∠BAC=90°,
∴∠DOB+∠DBO=∠AOC+∠ACO=90°.
∵∠DOB=∠AOC,
∴∠DBO=∠MCA
∵M是DC的中点,
∴CM=$\frac{1}{2}$CD=BD
又∵AB=AC,
∴△ADB≌△AMC.
(2)若CD<BD(如图2),在BD上是否存在一点N,使得△ADN是以DN为斜边的等腰直角三角形?若存在,请在图2中确定点N的位置,并加以证明;若不存在,请说明理由;
(3)当CD≠BD时,线段AD,BD与CD满足怎样的数量关系?请直接写出.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,矩形ABCD和正方形ECGF.其中E、H分别为AD、BC中点.连结AF、HG、AH.
(1)求证:AF=HG;
(2)求证:∠FAD=∠GHC;
(3)试探究∠FAH与∠AFE的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知AD=AE,∠B=∠C,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,△ABC中,DE∥BC,AE:EB=2:3,则DE:BC=2:5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在矩形ABCD中,将对角线CA绕点C逆时针旋转得到CE,连接AE,取AE的中点F,连接BF,DF.
(1)若点E在CB的延长线上,如图1.
①依题意补全图1;
②判断BF与DF的位置关系并加以证明;
(2)若点E在线段BC的下方,如果∠ACE=90°,∠ACB=28°,AC=6,请写出求BF长的思路.(可以不写出计算结果)

查看答案和解析>>

同步练习册答案