【题目】如图,在平面直角坐标系中,点A(1,4),点B(3,2),连接OA,OB.
(1)求直线OB与AB的解析式;
(2)求△AOB的面积.
(3)下面两道小题,任选一道作答.作答时,请注明题号,若多做,则按首做题计入总分.
①在y轴上是否存在一点P,使△PAB周长最小.若存在,请直接写出点P坐标;若不存在,请说明理由.
②在平面内是否存在一点C,使以A,O,C,B为顶点的四边形是平行四边形.若存在,请直接写出点C坐标;若不存在,请说明理由.
【答案】(1)直线OB的解析式为,直线AB的解析式为y= -x+5(2)5;(3)①存在,(0,
);②存在,(2,-2)或(4,6)或(-2,2)
【解析】
(1)根据题意分别设出两直线的解析式,代入直线上两点坐标即可求出直线OB与AB的解析式;
(2)延长线段AB交x轴于点D,求出D的坐标,分别求出、
由
即可求得;
(3)①根据两点之间线段最短,A、B在y轴同侧,作出点A关于y的对称点,连接
B与y轴的交点即为所求点P;
②使以A,O,C,B为顶点的四边形是平行四边形,则分三种情况分析,分别以OA、AB、OB为对角线作出平行四边形,利用中点坐标公式代入求解即可.
解:(1)设直线OB的解析式为y=mx,
∵点B(3,2),
∴ ,
∴直线OB的解析式为,
设直线AB的解析式为y=kx+b,
根据题意可得:
解之得
∴直线AB的解析式为y= -x+5.
故答案为:直线OB的解析式为,直线AB的解析式为y= -x+5;
(2)如图,延长线段AB交x轴于点D,
当y=0时,-x+5=0,x=5,
∴点D横坐标为5,OD=5,
∴,
∴,
故答案为:5.
(3)①存在,(0,);
过点A作y轴的对称点,连接
B,交y轴与点P,则点P即为使△PAB周长最小的点,
由作图可知,点坐标为
,又点B(3,2)
则直线B的解析式为:
,
∴点P坐标为,
故答案为:;
②存在. 或
或
.
有三种情况,如图所示:设点C坐标为,
当平行四边形以AO为对角线时,
由中点坐标公式可知,AO的中点坐标和BC中点坐标相同,
∴
解得
∴点坐标为
,
当平行四边形以AB为对角线时,AB的中点坐标和OC的中点坐标相同,则
∴点的坐标为
,
当平行四边形以BO为对角线时,BO的中点坐标和AC的中点坐标相同,则
解得
∴点坐标为
,
故答案为:存在,或
或
.
科目:初中数学 来源: 题型:
【题目】某县教育局为了了解学生对体育立定跳远()、跳绳(
)、掷实心球(
)、中长跑(
)四个项目的喜爱程度(每人只选一项),确定中考体育考试项目,特对八年级某班进行了调查,并绘制成如下频数、频率统计表和扇形统计图:
(1)求出这次调查的总人数;
(2)求出表中的值;
(3)若该校八年级有学生1200人,请你算出喜爱跳绳的人数,并发表你的看法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若AD=6cm,CD=3cm,则图中阴影部分的面积是____cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;
②a=1;
③当x=0时,y2﹣y1=4;
④2AB=3AC;
其中正确结论是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F、G、H分别是四边形ABCD边AB、BC、CD、AD的中点,下列说法正确的是( )
A.当AC⊥BD时,四边形EFGH是菱形
B.当AC=BD时,四边形EFGH是矩形
C.当四边形ABCD是平行四边形时,则四边形EFGH是矩形
D.当四边形ABCD是矩形时,则四边形EFGH是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 m.
(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,且AG=AB、CG的延长线交BA的延长线于点F,连接FD.试探究当∠BCD= °时,四边形ACDF是矩形,证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于的方程
有两个不相等的实数根
、
.
(1)求的取值范围;
(2)是否存在实数,使方程两实数根互为相反数?如果存在,求出
的值,如不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com