【题目】在升旗结束后,小铭想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好至C处且与地面成60°角,小铭从绳子末端C处拿起绳子后退至E点,求旗杆AB的高度和小铭后退的距离.(单位:米,参考数据:≈1.41,≈1.73,结果保留一位小数)
【答案】旗杆AB的高度为8.7m,小铭后退的距离为2.1m.
【解析】
设绳子AC的长为x米;由三角函数得出AB=ACsin60°,过D作DF⊥AB于F,则△ADF是等腰直角三角形,得出AF=DF=xsin45°,由AB-AF=BF=1.6得出方程,解方程求出x,得出AB,再由三角函数即可得出小铭后退的距离.
解:设绳子AC的长为x米;
在△ABC中,AB=ACsin60°,
过D作DF⊥AB于F,如图所示:
∵∠ADF=45°,
∴△ADF是等腰直角三角形,
∴AF=DF=xsin45°,
∵AB﹣AF=BF=1.6,
则xsin60°﹣xsin45°=1.6,
解得:x=10,
∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=xcos45°﹣x×cos60°=10×﹣10×≈2.1(m);
答:旗杆AB的高度为8.7m,小铭后退的距离为2.1m.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.
(1)求证:四边形AEFD是矩形;
(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:
(1)求k的值;
(2)求点A的坐标;(用含m代数式表示)
(3)当∠ABD=45°时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形的边在轴上,边在轴上.把沿折叠得到,与交于点.
(1)如图1,求证:.
(2)如图1,若,.写出所在直线的解析式.
(3)如图2,在(2)的条件下,是中点,是直线上一动点,是否有最小值,若有请求出最小值,若没有请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如 图,在边长为3 cm的正方形ABCD中,点E为BC边上的任意一点,AF⊥AE,AF交CD的延长线于F,则四边形AFCE的面积为_____cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12 m,由此他就知道了A,B间的距离,有关他这次探究活动的描述错误的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
【答案】D
【解析】试题分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN∥AB,MN=AB,再根据相似三角形的判定解答.
试题解析:∵M、N分别是AC,BC的中点
∴MN∥AB,MN=AB,
∴AB=2MN=2×12=24m
△CMN∽△CAB
∵M是AC的中点
∴CM=MA
∴CM:MA=1:1
故描述错误的是D选项.
故选D.
考点:1.三角形中位线定理;2.相似三角形的应用.
【题型】单选题
【结束】
10
【题目】若关于的一元二次方程+x-3m=0有两个不相等的实数根,则的取值范围是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com