【题目】如图1,一超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1∶2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为37°,则二楼的层高BC约为(精确到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( )
图1 图2
A. 4米 B. 3.6米 C. 2.2米 D. 4.6米
科目:初中数学 来源: 题型:
【题目】连接多边形任意两个不相邻顶点的线段称为多边形的对角线.
(1)四、五、六、n边形对角线条数分别为 、 、 、 .
(2)多边形可以有12条对角线吗?如果可以,求多边形的边数;如果不可以,请说明理由.
(3)若一个n边形的内角和为1800°,求它对角线的条数.
(4)已知k-1边形的对角线条数是,求k+1边形的对角线条数(k>4).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着北京申办冬奥会的成功,愈来愈多的同学开始关注我国的冰雪体育项目. 小健从新闻中了解到:在2018年平昌冬奥会的短道速滑男子500米决赛中,中国选手武大靖以39秒584的成绩打破世界纪录,收获中国男子短道速滑队在冬奥会上的首枚金牌. 同年11月12日,武大靖又以39秒505的成绩再破世界纪录. 于是小健对同学们说:“2022年北京冬奥会上武大靖再获金牌的可能性大小是.”你认为小健的说法_________(填“合理”或“不合理”),理由是__________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的一元二次方程x2+(2k﹣1)x+k2=0的两根a、b满足a2﹣b2=0,双曲线 (x>0)经过Rt△OAB斜边OB的中点D,与直角边AB交于C(如图),则S△OBC为( )
A. 3 B. C. 6 D. 3或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料一:把一个自然数的个位数字截去,再用余下的数减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大不易看出是否7的倍数,可重复上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断392是否7的倍数的过程如下:,,所以,392是7的倍数;又例如判断8638是否7的倍数的过程如下:,,,所以,8638是7的倍数.
材料二:若一个四位自然数n满足千位与个位相同,百位与十位相同,我们称这个数为“对称数”.将“对称数”n的前两位与后两位交换位置得到一个新的“对称数”,记,例如.
(1)请用材料一的方法判断6909与367能不能被7整除;
(2)若m、p是“对称数”,其中,(,且a,b,c均为整数),若m能被7整除,且,求p.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:求31+32+33+34+35+36的值
解:设S=31+32+33+34+35+36①
则3S=32+33+34+35+36+37②
用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3
∴2S=37﹣3,即S=,∴31+32+33+34+35+36=
以上方法我们成为“错位相减法”,请利用上述材料,解决下列问题:
(一)棋盘摆米
这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行”国王以为要不了多少粮食,就随口答应了,结果国王输了
(1)国际象棋共有64个格子,则在第64格中应放 粒米(用幂表示)
(2)设国王输给阿基米德的米粒数为S,求S
(二)拓广应用:
1.计算:(仿照材料写出求解过程)
2.计算:= (直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展了以“责任、感恩”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图,
(1)该班有 人,学生选择“和谐”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 度;
(2)如果该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有 人;
(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com