分析 根据等腰三角形的性质可以得出∠ABC=∠ACB,再由平角的性质可以得出∠ABM=∠ACN,就可以得出△AMB≌△ANC,就可以得出结论.
解答 解:等腰三角形,理由如下,
∵AB=AC,
∴∠ABC=∠ACB.
∵∠ABC+∠ABM=180°,∠ACB+∠ACN=180°,
∴∠ABM=∠ACN.
在△AMB和△ANC中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABM=∠ACN}\\{BM=CN}\end{array}\right.$,
∴△AMB≌△ANC(SAS),
∴AM=AN,
∴△AMN是等腰三角形.
点评 本题考查了等腰三角形的性质的运用,平角的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com