精英家教网 > 初中数学 > 题目详情
精英家教网如图,抛物线y=a(x-1)2-
4
3
3
经过△ABC的三个顶点,已知点A(-1,0),点C在y轴上,且BC∥x轴.
(1)求a的值;
(2)判断△ABC的形状,并说明理由;
(3)探究:
①若点P是抛物线对称轴上的一个动点,求△PAC周长的最小值;
②若点P是抛物线对称轴且在直线BC上方的一个动点,是否存在点P使△PAB是等腰三角形.若存在,直接写出所有符合条件的点P坐标;不存在,请说明理由.
分析:(1)本题需先把点A的坐标代入抛物线的解析式即可得出a的值;
(2)本题需先根据x=0,得出AC=2,再根据对称性可得点B的坐标,求出BC的值,从而证出AC=BC,即可得出△ABC是等腰三角形;
(3)①本题须先根据题意得出直线AB与对称轴的交点为点P时,△PAC周长的最小,再求出AC+AB的值即可;
②本题需分当PA=AB时,当PB=AB时,当PA=PB时三种情况进行讨论即可得出点P坐标.
解答:解:(1)将点A(-1,0)代入抛物线y=a(x-1)2-
4
3
3

得:0=a(-1-1)2-
4
3
3

解得a=
3
3


(2)△ABC是等腰三角形,
令x=0,则y=
3
3
(0-1)2-
4
3
3
=-
3

∴点C(0,-
3
),
∴在Rt△AOC中,AC=
OA2+OC2
=2,
由对称性可得点B(2,-
3
),
∴BC=2,
∴AC=BC,即△ABC是等腰三角形;

(3)①由于点B、C关于抛物线对称轴对称,
所以取直线AB与对称轴的交点为点P时,
△PAC周长的最小,△PAC周长=AC+AB=2+2
3

②当PA=AB时,点P坐标为(1,2
2
)

当PB=AB时,点P坐标为(1,
11
-
3
)

当PA=PB时,点P坐标为(1,0).
点评:本题主要考查了二次函数的综合知识,在解题时要能灵活应用二次函数和等腰三角形的有关知识和性质是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案