精英家教网 > 初中数学 > 题目详情
已知:如图,AB是⊙O的直径,P为⊙O外一点,PA⊥AB,弦BC∥OP
求证:PC是⊙O的切线.

【答案】分析:连接OC,要证明PC是⊙O的切线只要证明∠OCP=90°即可;可利用已知条件可以证明△PCO≌△PAO,即可得到∠OCP=∠OAP=90°.
解答:证明:如图,连接OC;
∵BC∥OP,
∴∠B=∠POA,∠BCO=∠COP,
∵OB=OC,
∴∠B=∠OCB,
∴∠COP=∠AOP;
∵OC=OA,OP=OP,
∴△PCO≌△PAO,
∴∠OCP=∠OAP=90°,
∴PC是⊙O的切线.
点评:本题主要考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案