精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB4AD5ADABBC分别与O相切于点EFG,过点DO的切线交BC于点M,切点为N,则DM的长为(  )

A. B. C. D. 2

【答案】B

【解析】

连接OEOFONOG,在矩形ABCD中,得到∠A=∠B90°,CDAB4,由于ADABBC分别与⊙O相切于EFG三点,得到∠AEO=∠AFO=∠OFB=∠BGO90°,推出四边形AFOEFBGO是正方形,得到AFBFAEBG2,然后由勾股定理列方程即可求出DM

解:连接OEOFONOG

在矩形ABCD中,

∵∠A=∠B90°,CDAB4

ADABBC分别与⊙O相切于EFG三点,

∴∠AEO=∠AFO=∠OFB=∠BGO90°,

∴四边形AFOEFBGO是正方形,

AFBFAEBG2

DE3

DM是⊙O的切线,

DNDE3MNMG

CM52MN3MN

RtDMC中,DM2CD2+CM2

∴(3+NM2=(3NM2+42

NM

DM3+=

故本题答案为:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;

(2)若点M是抛物线在x轴下方图象上的动点,过点M作MNy轴交直线BC于点N,求MN的最大值;

(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1ABN的面积为S2,且S1=6S2,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从 2018 9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了手机伴我健康行主题活动,他们随机抽取部分学生进行使用手机目的每周使用手机的时间的问卷调查,并绘制成如图①,②的 统计图,已知查资料的人数是 40人.请你根据以上信息解答下列问题:

(1)在扇形统计图中,玩游戏对应的百分比为______,圆心角度数是______度;

(2)补全条形统计图;

(3)该校共有学生2100人,估计每周使用手机时间在2 小时以上(不含2小时)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Ax1y1)、Bx2y2)都在某函数图象上,且当x1x2<0时,y1y2,则此函数一定不是(  )

A. B. y=﹣2x+1 C. yx2﹣1 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=6cm,BC=7cm,ABC=30°,点PA点出发,以1cm/s的速度向B点移动,点QB点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,点Dy轴上,以D为圆心,作⊙Dx轴于点EF,交y轴于点BG,点A上,连接ABx轴于点H,连接 AF并延长到点C,使∠FBC=A

(1)判断直线BC与⊙D的位置关系,并说明理由;

(2)求证:BE2=BH·AB

(3) 若点E坐标为(-4,0),点B的坐标为(0,-2),AB=8,求FA两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数yx0)的图象绕原点O逆时针旋转45°,所得的图象与原图象相交于点A,连接OA,以O为圆心,OA为半径作圆,交函数yx0)的图象与点B,则扇形AOB的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△BCP在正方形ABCD内,则∠APD_____度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资金额成正比例关系,如图1所示;种植花卉的利润与投资金额成二次函数关系,如图2所示.(注:利润与投资金额的单位均为万元)

1)分别求出利润关于投资金额的函数关系;

2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉的金额是万元,求这位专业户能获取的最大总利润是多少万元?

查看答案和解析>>

同步练习册答案