精英家教网 > 初中数学 > 题目详情
10.已知二次函数图象的顶点坐标为(2,0),与y轴的交点为(0,1),则点(-m,2m-1)是否在该二次函数图象上,说明理由.

分析 根据抛物线的顶点及与y轴的交点求得抛物线解析式,将点(-m,2m-1)代入抛物线解析式,判断该方程有无实数根即可.

解答 解:点(-m,2m-1)不在该二次函数图象上,
根据题意,可设二次函数解析式为:y=a(x-2)2
将(0,1)代入,得:4a=1,解得:a=$\frac{1}{4}$,
故抛物线解析式为:y=$\frac{1}{4}$(x-2)2
若点(-m,2m-1)在y=$\frac{1}{4}$(x-2)2上,
则$\frac{1}{4}$(-m-2)2=2m-1,
整理,得:m2-4m+8=0,
∵△=(-4)2-4×8=-16,
∴方程无解,
故点(-m,2m-1)不在该二次函数图象上.

点评 本题主要考查二次函数图象与性质及待定系数法求函数解析式、一元二次方程根的判别式,根据题意得出关于m的方程是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,直线y=-2x+2与抛物线y=ax2+bx(a<0)相交于点A,B.双曲线y=$\frac{k}{x}$过A、B两点,已知点B的坐标为(2,-2),点A在第二象限内,且tan∠Aoy=$\frac{1}{4}$.
(1)求双曲线和抛物线的解析式;
(2)计算△AOB的面积;
(3)在抛物线上是否存在点P,使△AOP的面积等于△AOB的面积?若存在,请你写出点P的坐标;若不存在,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,∠OCA=90°,点A在x轴上,OC=AC=4,D、E分别是OC、AC的中点,将四边形OAED沿x轴向右平移,得四边形PQRS.设OP=m(0<m<4$\sqrt{2}$).
(Ⅰ)在平移过程中,四边形OPSD能否成为菱形?若能,求出此时m的值;若不能,说明理由.
(Ⅱ)设平移过程中△OAC与四边形SPQR重叠部分的面积为S,试用含m的式子表示S.
(Ⅲ)当S=3时,求点P的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)解方程:1+$\frac{3x}{x-2}$=$\frac{6}{x-2}$; 
(2)解不等式组:$\left\{\begin{array}{l}x-1>2x\\ \frac{1}{2}x+3≤-1.\end{array}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某电视台为了解观众对“跑男”综艺节目的喜爱情况,随机抽取某社区部分观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:

请根据以上信息,解答下列问题:
(1)求被调查的男观众中,表示“不喜欢”的男观众所占的百分比是多少?
(2)求这次调查的女观众人数,并直接补全条形统计图.
(3)在扇形统计图中,“一般”所对应的圆心角为108度.
(4)若该社区有女观众约1000人,估计该社区女观众喜欢看“跑男”综艺节目的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为(  ) 
A.75°B.76°C.77°D.78°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,四边形OABC是面积为4的正方形,函数y1=$\frac{k}{x}$(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数y1=$\frac{k}{x}$(x>0)的图象交于点E、F,求线段EF所在直线的解析式y2=mx+n;
(3)当y2>y1时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解下列不等式,并把它们的解集分别表示在数轴上:
(1)3x-2x<5;
(2)x-6>2x;
(3)$\frac{x}{2}$>$\frac{x}{3}$;
(4)2x-7>5-2x;
(5)$\frac{1-3x}{2}$>1-2x;
(6)x-$\frac{1}{2}$(4x-1)≤2;
(7)$\frac{x-1}{2}$+1≥$\frac{x}{4}$;
(8)0.01x-1≤0.02x.

查看答案和解析>>

同步练习册答案