精英家教网 > 初中数学 > 题目详情
30、某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
价格(万元/台) 7 5
每台日产量(个) 100 60
(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?
分析:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.
(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.
解答:解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台.
依题意,得7x+5×(6-x)≤34.
解这个不等式,得x≤2,即x可取0,1,2三个值.
所以,该公司按要求可以有以下三种购买方案:
方案一:不购买甲种机器,购买乙种机器6台.
方案二:购买甲种机器1台,购买乙种机器5台.
方案三:购买甲种机器2台,购买乙种机器4台.

(2)按方案一购买机器,所耗资金为6×5=30万元,新购买机器日生产量为6×60=360(个);
按方案二购买机器,所耗资金为1×7+5×5=32万元,新购买机器日生产量为1×100+5×60=400(个);
按方案三购买机器所耗资金为2×7+4×5=34万元,新购买机器日生产量为2×100+4×60=440(个).
因此,选择方案二既能达到生产能力不低于380个的要求,又比方案三节约2万元资金.
故应选择方案二.
点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能超过36万元.
(1)按该公司要求可以有哪几种购买方案?
(2)若该公司购进的6台机器的日生产力不能低于420个,那么为了节约资金应选择那种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

16、某公司为了扩大经营,决定购进6台机器用于生产某种机器零件.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产机器零件的数量如下表所示.经过预算,本次购买机器所用资金不能超过34万元.按该公司要求可以有几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

22、某公司为了扩大经营,决定购进5台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过22万元.
价格(万元/台) 5 4
每台日产量(个) 80 50
(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的5台机器的日生产能力不能低于280个,那么为了节约资金应选择哪种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种型号机器供选择,其中每种型号机器的价格如下表所示.经过预算,本次购买机器所耗资金不能超过68万元.
机器型号
价格(万元/台) 14 10
(1)若设购买甲种型号机器x台,则购买乙种型号机器为
(6-x)
(6-x)
 台(用含x的代数式表示);
(2)求该公司共有哪几种购买机器的方案?

查看答案和解析>>

同步练习册答案