精英家教网 > 初中数学 > 题目详情

【题目】如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.

(1)∠AOD的余角是 ______ ,∠COD的余角是 ______

(2)OE是∠BOC的平分线吗?请说明理由.

【答案】(1)∠AOD的余角是∠COE, ∠BOE;∠COD的余角是∠COE, ∠BOE.

(2)OE是∠BOC的平分线,证明见解析.

【解析】1AOD的余角是COEBOECOD的余角是COEBOE

2OEBOC的平分线.理由:

∵∠DOE=90°∴∠AOD+∠BOE=90°∴∠COD+∠DOE=90°∴∠AOD+∠BOE=∠COD+∠DOE

OD平分AOC∴∠AOD=∠COD∴∠COE=∠BOEOE平分BOC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若反比例函数y= (k≠0)的图象经过点(1,﹣3),则一次函数y=kx﹣k(k≠0)的图象经过象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某化工厂从2008年开始节能减排,控制二氧化硫的排放,图分别是该厂年二氧化硫排放量单位:吨的两幅不完整的统计图,根据图中信息回答下列问题.

该厂年二氧化硫排放总量是______ 吨;这四年平均每年二氧化硫排放量是______

把图中折线图补充完整.

年二氧化硫的排放量对应扇形的圆心角是______ 度,2011年二氧化硫的排放量占这四年排放总量的百分比是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.
(1)求证:DE是⊙O的切线.
(2)填空: ①当∠CAB=时,四边形AOED是平行四边形;
②连接OD,在①的条件下探索四边形OBED的形状为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)下列图形中,图(a)是正方体木块,把它切去一块,得到如图(b)(c)(d)(e)的木块.

1)我们知道,图(a)的正方体木块有8个顶点、12条棱、6个面,请你将图(b)、(c)、(d)、(e)中木块的顶点数、棱数、面数填入下表;

2)上表,各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x、棱数y、面数z之间的数量关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.

(1)发现:在图1中, =
(2)应用:如图2,将△ADE绕点A旋转,请求出 的值;

(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是4 的平分线交DC于点E.若点PQ分别是ADAE上的动点,则的最小值是(  )

A. 2 B. 4 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.求:

(1)P到OC的距离.
(2)山坡的坡度tanα.
(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB的平分线为OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.试说明:

(1)MON=(BON-AON);

(2)MOG=(AOG+BOG).

查看答案和解析>>

同步练习册答案