精英家教网 > 初中数学 > 题目详情

抛物线轴交于点A,B,与y轴交于点C,其中点B的坐标为.
(1)求抛物线对应的函数表达式;]
(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;
(3)将线段BC平移得到线段(B的对应点为,C的对应点为),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点到直线的距离的取值范围.

(1);(2);(3).

解析试题分析:(1)根据曲线上点的坐标与方程的关系,将B代入求出k即可.
(2)应用待定系数法求出直线BC的解析式,将对称轴的代入BC的解析式求得抛物线G的顶点坐标,从而得到抛物线G所对应的函数表达式.
(3)连接,过点于点H,由知当最大时h最大,当最小时h最小.,即当与M重合时,最大,h最大;当与M重合时,最小,h最小,据此求解即可.
试题解析:(1)将B代入,解得.
∴抛物线对应的函数表达式为.
(2)由题意得,B(3,0),C().
∴直线BC的解析式为.
由(1)得
∵将的图象向上平移时,横坐标不变,
∴将代入.
∴抛物线G的顶点坐标为
∴抛物线G所对应的函数表达式为,即.
(3)如图1,连接,过点于点H,

∴当最大时h最大,当最小时h最小.
由图1可知当与M重合时,最大,h最大.
此时,,即,∴.
由图2可知当与M重合时,最小,h最小.
此时,,即
此时,,∴.
综上所述,.

考点:1.二次函数综合题;2.平移的性质;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二次函数的性质;6.三角形的面积;7.转换思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,经过原点的抛物线y=-x2+bx(b>2)与x轴的另一交点为A,过点P(1,)作直线PN⊥x轴于点N,交抛物线于点B.点B关于抛物线对称轴的对称点为C.连结CB,CP.
(1)当b=4时,求点A的坐标及BC的长;
(2)连结CA,求b的适当的值,使得CA⊥CP;
(3)当b=6时,如图2,将△CBP绕着点C按逆时针方向旋转,得到△CB′P′,CP与抛物线对称轴的交点为E,点M为线段B′P′(包含端点)上任意一点,请直接写出线段EM长度的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.
(1)求抛物线的解析式;
(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.
(1)试用含m的代数式表示A、B两点的坐标;
(2)当点B在原点的右侧,点C在原点的下方时,若是等腰三角形,求抛物线的解析式;
(3)已知一次函数,点P(n,0)是x轴上一个动点,在(2)的条件下,过点P作垂直于x轴的直线交这个一次函数的图象于点M,交抛物线于点N,若只有当时,点M位于点N的下方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,矩形的边轴上,且,直线经过点,交轴于点
(1)点的坐标分别是       ),       );
(2)求顶点在直线上且经过点的抛物线的解析式;
(3)将(2)中的抛物线沿直线向上平移,平移后的抛物线交轴于点,顶点为点.求出当时抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠BAC=90°, BC∥x轴,抛物线y=ax2-2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.

(1)求抛物线的解析式;
(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形,若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
⑴ 求出月销售量y(万件)与销售单价x(元)之间的函数关系式;
⑵ 求出月销售利润z(万元)与销售单价x(元)之间的函数关系式,并在下面坐标系中,画出图象草图;

⑶ 为了使月销售利润不低于480万元,请借助⑵中所画图象进行分析,说明销售单价的取值范围.

查看答案和解析>>

同步练习册答案