分析 (1)连接OC,由切线的性质得出DC⊥OC,得出∠ACD+∠ACO=90°,由垂线的性质得出∠ACD+∠DAC=90°,得出∠ACO=∠DAC,再由等腰三角形的性质得出∠OAC=∠ACO,证出∠DAC=∠OAC即可;
(2)由sin∠DAC=$\frac{CD}{AC}$=$\frac{3}{5}$,得出tan∠DAC=$\frac{3}{4}$,设CD=3,则AC=5,AD=4,证明△ACD∽△ABC,得出$\frac{CD}{BC}=\frac{AD}{AC}$,求出BC=$\frac{15}{4}$,求出CF=$\frac{3}{4}$BC=$\frac{45}{16}$,得出AF=AC-CF═$\frac{35}{16}$,即可得出结果.
解答 (1)证明:连接OC,如图所示:
∵DC是⊙O的切线,
∴DC⊥OC,
∴∠ACD+∠ACO=90°,
∵AD⊥DC,
∴∠ACD+∠DAC=90°,
∴∠ACO=∠DAC,
∵OA=OC,
∴∠OAC=∠ACO,
∴∠DAC=∠OAC,
∴AC平分∠DAB;
(2)解:∵AD⊥DC,
∴∠D=90°,
∵sin∠DAC=$\frac{CD}{AC}$=$\frac{3}{5}$,
∴tan∠DAC=$\frac{3}{4}$,
设CD=3,则AC=5,AD=4,
∵AB是⊙O的直径,
∴∠ACB=90°=∠ADC,
∵∠DAC=∠OAC,
∴△ACD∽△ABC,
∴$\frac{CD}{BC}=\frac{AD}{AC}$,即$\frac{3}{BC}=\frac{4}{5}$,
解得:BC=$\frac{15}{4}$,
∵∠CBF=∠DAC,
∴tan∠CBF=$\frac{CF}{BC}$=$\frac{3}{4}$,
∴CF=$\frac{3}{4}$BC=$\frac{45}{16}$,
∴AF=AC-CF=5-$\frac{45}{16}$=$\frac{35}{16}$,
∴$\frac{AF}{FC}$=$\frac{7}{9}$.
点评 本题考查了相似三角形的判定与性质、切线的性质、三角函数、圆周角定理等知识;熟练掌握切线的性质,证明三角形相似是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 正有理数和负有理数统称为有理数 | |
B. | 符号不同的两个数互为相反数 | |
C. | 绝对值等于它的相反数的数是非正数 | |
D. | 两数相加,和一定大于任何一个加数 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a>b | B. | a<b | C. | b≤a | D. | a≤b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com