精英家教网 > 初中数学 > 题目详情
19、如图,在五边形ABCDE中,AE⊥DE,∠BAE=120°,∠BCD=60°,∠CDE-∠ABC=30°.
(1)求∠D的度数;
(2)AB∥CD吗?请说明理由.
分析:(1)利用n边形的内角和定理得到∠A+∠B+∠C+∠D+∠E=(5-2)×180°=540°,再把已知角代入得到∴∠D+∠B=540°-90°-120°-60°=270°,而∠CDE-∠ABC=30°,即可求出∠D的度数;
(2)易得∠B+∠C=180°,根据平行线的判定即可得到AB∥CD.
解答:解:(1)∵AE⊥DE,
∴∠AED=90°,
而∠A+∠B+∠C+∠D+∠E=(5-2)×180°=540°,
∠BAE=120°,∠BCD=60°,
∴∠D+∠B=540°-90°-120°-60°=270°,
∵∠CDE-∠ABC=30°.
∴∠D=150°;

(2)AB∥CD.利用如下:
∵∠BAE=120°,∠BCD=60°,
∴∠B+∠C=180°,
∴AB∥CD.
点评:本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°;也考查了平行线的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在五边形ABCDE中,BC∥AD,BD∥AE,AB∥EC.图中与△ABC面积相等的三角形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在五边形ABCDE中,∠ABC=∠AED=90°,M是CD的中点,BM=EM,求证:∠BAC=∠EAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在五边形ABCDE中,∠ABC=∠AED=90°,∠BAC=∠EAD,M是CD中点,试判断
BM,EM的大小关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案