精英家教网 > 初中数学 > 题目详情
如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点PQ运精英家教网动时间为t(单位:秒).
(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;
(2)当t=2秒时,求梯形OFBC的面积;
(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.
分析:(1)可通过构建直角三角形来求解.过B作BG⊥OA于G,过Q作QH⊥OA于H.可根据勾股定理,求出AB的值,用t表示出QP,让QP=AB,求出t的值;
(2)有了t的值,即可求出OP,CQ,QB的值,根据平行线段成比例,可以得出AF,进而求出OF的值,这样就可以求出梯形的面积;
(3)分三种情况进行讨论,让△PQF的三边两两相等,求出t的值.
解答:精英家教网解:(1)如图,过B作BG⊥OA于G,
则AB=
BG2+GA2
=
122+(15-10)2
=
169
=13.
过Q作QH⊥OA于H,
则QP=
QH2+PH2
=
122+(10-t-2t)2
=
144+(10-3t)2

要使四边形PABQ是等腰梯形,则AB=QP,
144+(10-3t)2
=13

∴t=
5
3
,或t=5(此时PABQ是平行四边形,不合题意,舍去);
∴t=
5
3


(2)当t=2时,OP=4,CQ=10-2=8,QB=2.
∵CB∥DE∥OF,
QB
AF
=
QE
EF
=
QD
DP
=
QB
OP
=
2
4
=
1
2

∴AF=2QB=2×2=4.
∴OF=15+4=19.
∴S梯形OFBC=
1
2
(10+19)×12=174.

(3)①当QP=PF时,则
122+(10-t-2t)2
=15+2t-2t,
∴t=
1
3
或t=
19
3

②当QP=QF时,则
122+(10-t-2t)2
=
122+FH2
=
122+[15+2t-(10-t)]2

122+(10-3t)2
=
122+(5+3t)2

∴t=
5
6

③当QF=PF时,则
122+(5+3t)2
=15,
∴t=
4
3
或t=-
14
3

综上,当t=
1
3
,t=
19
3
,t=
5
6
,t=
4
3
时,△PQF是等腰三角形.
点评:①本题综合考查了勾股定理的应用,等腰梯形的判定,等腰三角形的判定和平行线分线段成比例等的知识点;
②由于知识点较多,有一定难度;
③要注意的是(3)中要分三种情况进行讨论,不可丢掉任何一种.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角梯形COAB中,CB∥OA,以O为原点建立直角坐标系,A、C的坐标分别为A精英家教网(10,0)、C(0,8),CB=4,D为OA中点,动点P自A点出发沿A→B→C→O的线路移动,速度为1个单位/秒,移动时间为t秒.
(1)求AB的长,并求当PD将梯形COAB的周长平分时t的值,并指出此时点P在哪条边上;
(2)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,并指出t的取值范围;
(3)几秒后线段PD将梯形COAB的面积分成1:3的两部分?求出此时点P的坐标?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形OABC中,OA、OC边所在直线与x、y轴重合,BC∥OA,点B的坐标为(6.4,4.8),对角线OB⊥OA.在线段OA、AB上有动点E、D,点E以每秒2厘米的速度在线段OA上从点O向点A匀速运动,同时点D以每秒1厘米的速度在线段AB上从点A向点B匀速运动.当点E到达点A时,点D同时停止运动.设点E的运动时间为t(秒),
(1)求线段AB所在直线的解析式;
(2)设四边形OEDB的面积为y,求y关于t的函数关系式,并写出自变量的t的取值范围;
(3)在运动过程中,存不存在某个时刻,使得以A、E、D为顶点的三角形与△ABO相似,若存在求出这个时刻t,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湛江模拟)已知,如图,在直角梯形COAB中,CB∥OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.
(1)求过点O、B、A三点的抛物线的解析式;
(2)求AB的长;若动点P在从A到B的移动过程中,设△APD的面积为S,写出S与t的函数关系式,并指出自变量t的取值范围;
(3)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,2),C(3,0).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ⊥直线OA,垂足为Q.设P点移动的时间为t秒(0<t≤7),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)写出点B的坐标:
(3,2)
(3,2)

(2)当t=7时,求直线PQ的解析式,并判断点B是否在直线PQ上;
(3)求S关于t的函数关系式;
(4)连接AC.是否存在t,使得PQ分△ABC的面积为1:3?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案