精英家教网 > 初中数学 > 题目详情
8.如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P在直线OB上运动且满足∠APQ=90°,PQ交x轴于点C.点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,则PA:PC=(  )
A.$\frac{{\sqrt{15}}}{5}$B.$\frac{{\sqrt{15}}}{3}$C.$\frac{{\sqrt{15}}}{5}$或$\frac{{\sqrt{15}}}{3}$D.以上都不对

分析 可分点P在线段OB的延长线上及其反向延长线上两种情况进行讨论.易证PA:PC=PN:PM,设OA=x,只需用含x的代数式表示出PN、PM的长,即可求出PA:PC的值.

解答 解:①若点P在线段OB的延长线上,
过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,
PM与直线AC的交点为F,如图1所示.

∵∠APN=∠CPM,∠ANP=∠CMP,
∴△ANP∽△CMP.
∴$\frac{PA}{PC}=\frac{PN}{PM}$.
∵∠ACE=∠AEC,
∴AC=AE.
∵AP⊥PC,
∴EP=CP.
∵PM∥y轴,
∴AF=CF,OM=CM.
∴FM=$\frac{1}{2}$OA.
设OA=x,
∵PF∥OA,
∴△PDF∽△ODA.
∴$\frac{PF}{OA}=\frac{PD}{OD}$,
∵PD=2OD,
∴PF=2OA=2x,FM=$\frac{1}{2}$x.
∴PM=$\frac{5}{2}$x.
∵∠APC=90°,AF=CF,
∴AC=2PF=4x.
∵∠AOC=90°,
∴OC=$\sqrt{15}$x.
∵∠PNO=∠NOM=∠OMP=90°,
∴四边形PMON是矩形.
∴PN=OM=$\frac{\sqrt{15}}{2}$x.
∴PA:PC=PN:PM=$\frac{\sqrt{15}}{2}x$:$\frac{5}{2}$x=$\frac{\sqrt{15}}{5}$.
②若点P在线段OB的反向延长线上,
过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,
PM与直线AC的交点为F,如图2所示.

同理可得:PM=$\frac{3}{2}$x,CA=2PF=4x,OC=$\sqrt{15}$x.
∴PN=OM=$\frac{1}{2}$OC=$\frac{\sqrt{15}}{2}$x.
∴PA:PC=PN:PM=$\frac{\sqrt{15}}{2}$x:$\frac{3}{2}$x=$\frac{\sqrt{15}}{3}$.
综上所述:PA:PC的值为$\frac{\sqrt{15}}{5}$或$\frac{\sqrt{15}}{3}$;
故选:C.

点评 本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、勾股定理等知识,熟练运用相似判定与性质是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.三个同学对问题“若方程组$\left\{\begin{array}{l}{{a}_{1}x{+b}_{1}y{=c}_{1}}\\{{a}_{2}x{+b}_{2}y{=c}_{2}}\end{array}\right.$ 的解是$\left\{\begin{array}{l}{x=4}\\{y=10}\end{array}\right.$,求方程组$\left\{\begin{array}{l}{{4a}_{1}x+{5b}_{1}y={9c}_{1}}\\{{4a}_{2}x+{5b}_{2}y={9c}_{2}}\end{array}\right.$的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组中两个方程的两边都除以9,通过换元替代的方法来解决”,参照他们的讨论,你认为这个题目的解应该是?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知点A的坐标为(3,0),点B的坐标为(0,4),在x轴上求一点P,使得△PAB是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是(  )
A.2$\sqrt{10}$B.8C.2$\sqrt{17}$D.10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在等腰梯形ABCD中,AB∥CD,AD=BC=4,CD=6,AB=10.点P从点B匀速向点A运动,速度为2个单位/秒.过点P作直线BC的垂线PE,E为垂足,直线PE将梯形ABCD分成两部分.
(1)∠A=60°;
(2)将左下部分以PE为对称轴向上翻折.若两部分重合的面积为S,试求出S与运动时间t之间的函数关系式.
(3)在(2)的条件下,若B点的对应点为B′,在整过运动过程中,是否存在以点D、P、B′为顶点的三角形为直角三角形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)如图(1),在四边形ABCD中,AB∥CD,如果延长DC到点E,使CE=AB,连接AE,那么有S四边形ABCD=S△ADE,作DE边中点P,连接AP,则AP所在直线为四边形ABCD的面积等分线,你能说明理由吗?
(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在Rt△ABC中,已知∠ACB=90°,BC=4cm,AC=9cm,点D在射线CA上从C出发向点A方向运动(点D不与点A重合),且点D运动的速度为2m/s,现设运动时间为x秒时,对应的△ABD的面积为y cm2
(1)填写下表:
 时间x秒
 面积y cm2   
(2)请写出y与x之间满足的关系式;
(3)在点D的运动过程中
①直接指出出现△ABD为等腰三角形的次数有2次,当第一次出现△ABD为等腰三角形时,请用所学知识描述此时点D所在的位置为AB垂直平分线与AC的交点处
②求当x为何值时,△ABD的面积是△ABC的面积的$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知AB=AC,∠BAC=∠CDE=90°,DC=DE,点F是BE的中点.求证:FA=FD且FA⊥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.
(1)求∠PCQ的度数;
(2)当AB=4,AP:PC=1:3时,求PQ的大小.(提示:设AP为x,在△ABC中用勾股定理构建方程求解)

查看答案和解析>>

同步练习册答案