精英家教网 > 初中数学 > 题目详情

估算的值是( )

A. 在1和2之间 B. 在2和3之间

C. 在3和4之间 D. 在4和5之间

练习册系列答案
相关习题

科目:初中数学 来源:2017届辽宁省九年级3月月考数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=+bx+c经过A,B两点,抛物线的顶点为D.

(1)、求b,c的值;

(2)、点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;

(3)、在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2016~2017学年安徽省芜湖市九年级下学期第一次模拟考试数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是( )

A.a>0 B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0 D.当x<1时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源:2016-2017学年贵州省七年级下学期第一次月考数学试卷(解析版) 题型:填空题

已知x、y为实数,且+(y+2)2=0,则yx=______.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年贵州省七年级下学期第一次月考数学试卷(解析版) 题型:单选题

有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )

A. 8 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要(  )名工人.
A.15B.10C.8D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:△DEC的一个顶点D在△ABC内部,且∠CAD+∠CBD=90°.
(1)如图1,若△ABC与△DEC均为等腰直角三角形,且∠ABC=∠DEC=90°,连接BE,求证:△ADC∽△BEC.
(2)如图2,若∠ABC=∠DEC=90°,$\frac{AB}{BC}$=$\frac{DE}{EC}$=n,BD=1,AD=2,CD=3,求n的值;
(3)如图3,若AB=BC,DE=EC,且∠ABC=∠DEC=135°,BD=a,AD=b,CD=c,请直接写出a、b、c三者满足的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.矩形ABCD中,AB=12,BC=9,点M从点A出发,沿AB方向在线段AB上以2个单位长度每秒的速度运动,以点M为圆心,MA长为半径画圆,过点M作NM⊥AB,交⊙M于点N,设运动时间为t秒.
(1)如图1,当⊙M与BD相切时,
①求t的值;
②求△CDN的面积.
(2)如图2,若点N在矩形ABCD内部,且当∠CND=90°时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.

(1)当t为何值时,PQ∥AB?
(2)当t=3时,求△QMC的面积;
(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案