精英家教网 > 初中数学 > 题目详情

如右图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=

90°,ACBD交于点O,则有△__________≌△__________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________.

ABC  DCB  HL  ABO  DCO  AAS

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分别是AB、AC上的两点,且GF∥BC,AF=2,BG=4.
(1)求梯形BCFG的面积;
(2)有一梯形DEFG与梯形BCFG重合,固定△ABC,将梯形DEFG向右运动,直到点D与点C重合为止,如图②.
①若某时段运动后形成的四边形BDG'G中,DG⊥BG',求运动路程BD的长,并求此时G'B2的值;
②设运动中BD的长度为x,试用含x的代数式表示出梯形DEFG与Rt△ABC重合部分的面积S.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是
2
,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是
π
π
,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=
5
5
,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为
10
的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 -
5
的点吗?

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

如右图,在RtABCRtDCB中,AB=DCA=D=

90°ACBD交于点O,则有__________≌△__________

其判定依据是__________,还有__________≌△__________

其判定依据是__________.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如右图,在Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A的度数是____________;

查看答案和解析>>

同步练习册答案