如图,已知抛物线与轴交于A、B两点,与轴交于点C.
(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.
解:(1)令,得 解得
令,得
∴ A B C
(2)∵OA=OB=OC= ∴BAC=ACO=BCO=
∵AP∥CB, ∴PAB=
过点P作PE轴于E,则APE为等腰直角三角形
令OE=,则PE= ∴P
∵点P在抛物线上 ∴
解得,(不合题意,舍去)
∴PE=
∴四边形ACBP的面积=AB•OC+AB•PE
=
(3). 假设存在
∵PAB=BAC = ∴PAAC
∵MG轴于点G, ∴MGA=PAC =
在Rt△AOC中,OA=OC= ∴AC=
在Rt△PAE中,AE=PE= ∴AP=
设M点的横坐标为,则M
①点M在轴左侧时,则
(ⅰ) 当AMG PCA时,有=
∵AG=,MG=
即
解得(舍去) (舍去)
(ⅱ) 当MAG PCA时有=
即
解得:(舍去)
∴M
② 点M在轴右侧时,则
(ⅰ) 当AMG PCA时有=
∵AG=,MG=
∴
解得(舍去)
∴M
科目:初中数学 来源: 题型:
图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的
顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:
(1)在图①中以格点为顶点,画一个等腰三角形,使其内部含有已标注的3个格点;
(2)在图②中以格点为顶点,画一个正方形,使其边长为无理数,并使其内部含有已
标注的3个格点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com