精英家教网 > 初中数学 > 题目详情
1.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.

(1)填写下列各点的坐标:A3(1,0)、A7(3,0)、A11(5,0);
(2)写出点A2n+1的坐标(n是奇数);
(3)指出蚂蚁从原点O爬到点(101,1)时,爬行方向经历了多少次向上爬行?

分析 (1)观察图形可知,A3,A7,A11在x轴上,求出OA3、OA7,OA11长度,然后写出坐标即可;
(2)根据(1)中规律写出点A2n+1的坐标即可;
(3)根据每4个点为一个循环组依次循环,可知点A202(101,1),每4个点里面有一次向上爬行,202÷4=50…2,即可解答.

解答 解:(1)由图可知,A3,A7,A11都在x轴上,
∵小蚂蚁每次移动1个单位,
∴OA3=1,OA7=3,OA11=5,
∴A3(1,0),A7(3,0),A11(5,0);
故答案为:2,0;3,0;5,0;
(2)根据(1)的规律可得:A2n+1(n,0);
(3)∵每4个点为一个循环组依次循环,
∴点A202(101,1),
∵每4个点里面有一次向上爬行,且第一次爬行向上,202÷4=50…2,
∴蚂蚁从原点O爬到点(101,1)时,爬行方向经历了50+1=51次向上爬行.

点评 本题考查的是点的坐标,解决本题的关键是观察坐标找到规律.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,三条直线交于同一点,则∠1+∠2+∠3=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;
(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,等腰梯形ABCD中,AD∥BC,下底边AD在x轴上,AB=BC=CD=2且点A(-1,0).动点M、N均以每秒1个单位的相同速度从点A、D同时出发,分别沿A→B→C和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.
(1)请直接写出B、D两点的坐标;
(2)若以MN为直径的圆与直线BC相切,试求出此时t的值;
(3)当t=3秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DMO?若存在,请求出点P的纵坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,∠AOB=60°,点C在∠AOB的平分线上,OC=4,点P、Q分别是射线OA、OB上不同于O的一点,且四边形OPCQ的内角∠PCQ=120°.设CP=x,CQ=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图①,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,点A、B、E在同一条直线上,P是线段DF的中点,连结PG、PC,
(1)求证:PG⊥PC,PG=$\sqrt{3}$PC;
(2)将图①中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,其它条件不变(如图②),(1)中的条件仍然成立,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,点A、C的坐标分别为(3,0)、(0,2),分别过点A,C作x轴、y轴的垂线交于点B.
(1)直接写出点B的坐标;
(2)若过点C的直线CD交线段AB于点D,且把四边形OABC的面积分成1:3两部分,求点D的坐标;
(3)将(2)中的线段CD向下平移h个单位(h>0),得到对应线段C′D′,若C′D′将四边形OABC的周长分成相等的两部分,求h的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知x2-3x+1=0,则$\frac{x}{{{x^2}-x+1}}$的值是(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列各组数据中,不能作为一个直角三角形三边长的一组是(  )
A.32,42,52B.$1,\sqrt{2},\sqrt{3}$C.$1,2,\sqrt{3}$D.$1,\sqrt{2},1$

查看答案和解析>>

同步练习册答案