分析 (1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;
(2)如答题图2,设顶点P在直线AC上并沿AC方向滑动距离$\sqrt{2}$时,到达P′,作P′M∥y轴,PM∥x轴,交于M点,根据直线AC的斜率求得△P′PM是等腰直角三角形,进而求得抛物线向上平移1个单位,向右平移1个单位,从而求得平移后的解析式,进而求得与x轴的交点,与直线AC的交点,即可证得结论.
解答 解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3)
∴点B的坐标为(4,-1).
∵抛物线过A(0,-1),B(4,-1)两点,
∴$\left\{\begin{array}{l}{c=-1}\\{-\frac{1}{2}×16+4b+c=-1}\end{array}\right.$,
解得:b=2,c=-1,
∴抛物线的函数表达式为:y=-$\frac{1}{2}$x2+2x-1.
(2)证明:如图,设顶点P在直线AC上并沿AC方向滑动距离$\sqrt{2}$时,到达P′,作P′M∥y轴,PM∥x轴,交于M点,
∵点A的坐标为(0,-1),点C的坐标为(4,3),
∴直线AC的解析式为y=x-1,
∵直线的斜率为1,
∴△P′PM是等腰直角三角形,
∵PP′=$\sqrt{2}$,
∴P′M=PM=1,
∴抛物线向上平移1个单位,向右平移1个单位,
∵y=-$\frac{1}{2}$x2+2x-1=-$\frac{1}{2}$(x-2)2+1,
∴平移后的抛物线的解析式为y=-$\frac{1}{2}$(x-3)2+2,
令y=0,则0=-$\frac{1}{2}$(x-3)2+2,
解得x1=1,x=52,
∴平移后的抛物线与x轴的交点为(1,0),(5,0),
$\left\{\begin{array}{l}{y=-\frac{1}{2}(x-3)^{2}+2}\\{y=x-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,
∴平移后的抛物线与AC的交点为(1,0),
∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).
点评 此题考查了二次函数的图象与性质、待定系数法、一次函数、几何变换(平移,对称)、等腰直角三角形等知识点,考查了存在型问题,试题难度较大.
科目:初中数学 来源: 题型:选择题
A. | 1.2与-2.1 | B. | -(-9)与-|-9| | C. | -23与(-2)3 | D. | $-\frac{2}{3}$与$-(-\frac{3}{2})$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com