分析 (1)连接BD,根据三角形的中位线定理得到EH∥BD,EH=$\frac{1}{2}$BD,FG∥BD,FG═$\frac{1}{2}$BD,推出,EH∥FG,EH=FG,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH是平行四边形;
(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD的对角线满足AC⊥BD的条件时,四边形EFGH是矩形;
(3)根据邻边相等的矩形为正方形进行解答.
解答 解:(1)四边形EFGH的形状是平行四边形.理由如下:
如图,连结BD.
∵E、H分别是AB、AD中点,
∴EH∥BD,EH=$\frac{1}{2}$BD,
同理FG∥BD,FG=$\frac{1}{2}$BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形.
故答案是:平行四边形;
(2)当AC⊥BD时,四边形EFGH是矩形.理由如下:
如图,连结AC.
∵E、F、G、H分别为四边形ABCD四条边上的中点,
∴EH∥BD,HG∥AC,
∵AC⊥BD,
∴EH⊥HG,
又∵四边形EFGH是平行四边形,
∴平行四边形EFGH是矩形;
故答案是:AC⊥BD;
(3)当AC⊥BD且AC=BD时,四边形EFGH是正方形.
故答案是:AC⊥BD且AC=BD.
点评 本题主要考查对三角形的中位线定理,平行四边形的判定,解题的关键是正确的构造三角形病正确的运用中位线定理,难度不大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $-\frac{3}{2}$ | B. | $-\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com