精英家教网 > 初中数学 > 题目详情
9.已知a2+a-1=0,求代数式(a+1)2+(a+1)(a-1)的值.

分析 原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.

解答 解:原式=a2+2a+1+a2-1=2a2+2a=2(a2+a),
当a2+a-1=0,即a2+a=1时,原式=2.

点评 此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:

(1)补全条形统计图
(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为56人;
(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABCD、线段CD分别表示该产品每千克生产成本y1(单位:元)销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.
(1)求线段AB所表示的y1与x之间的函数表达式.
(2)当该产品产量为多少时,获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.
(1)M、N两地之间的距离为80km;
(2)求线段BC所表示的y与t之间的函数表达式;
(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点P在菱形ABCD的对角线AC上,PA=PD,⊙O为△APD的外接圆.
(1)求证:△APD∽△ADC.
(2)若AD=6,AC=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并直接写出当x取何值时,商场获利润不少于2160元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,直线y=kx+b与x轴交于点A(1,0),与 y交于点B(0,-2).
(1)求直线AB的表达式;
(2)点C是直线AB上的点,且CA=AB,过动点P(m,0)且垂直于x轴的直线与直线AB 交于点D,若点D不在线段BC上,写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y(件)和销售该品牌玩具获得利润w(元);
(2)求该玩具销售单价x为多少元时,商场获得最大利润,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,圆锥的底面半径为9cm,母线长为30cm,这个圆锥的侧面积为270πcm2

查看答案和解析>>

同步练习册答案