【题目】(1)如图,在矩形中,.求:①矩形的面积;②对角线的长.
(2)如图,在菱形中,,,,为垂足.
①求证:.
②若,求的大小.
【答案】(1)①;②;(2)①见详解;②68°.
【解析】
(1)①直接利用矩形面积公式计算即可;
②直接利用勾股定理即可求得BD长;
(2)①由菱形得∠B=∠D,AB=AD,再通过,得∠AEB=∠AFD,进而即可得证;
②利用∠B的度数可求得∠C的度数,再利用四边形的内角和即可求得的大小.
解:(1)①∵在矩形中,.
∴
∴矩形的面积;
②∵在矩形中,∠A=90°,.
∴在Rt△ABD中,,
∴对角线的长为.
(2)①∵在菱形中,
∴∠B=∠D,AB=AD,
∵,,
∴∠AEB=∠AFD=90°,
∴在△ABE和△ADF中,
∴△ABE≌△ADF(AAS),
②∵在菱形中,AB∥CD,,
∴∠C=180°-∠B=112°,
∵,,
∴∠AEC=∠AFC=90°,
∴∠EAF=360°-∠AEC-∠AFC-∠C=360°-90°-90°-112°=68°,
∴的大小为68°.
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:
(1)小龙共抽取______名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______;
(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=_____度;
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=_______度;
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:____________________.
(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.
(1)直接写出点B的坐标,AO和BC位置关系是;
(2)当P、Q分别是线段AO,OC上时,连接PB,QB,使,求出点P的坐标;
(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两块直角三角尺的顶点叠放在一起.
(1)若∠DCE=35°,求∠ACB的度数;
(2)若∠ACB=140°,求∠DCE的度数;
(3)猜想∠ACB与∠DCE的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数 y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
(1)求反比例函数与一次函数的函数关系式;
(2)根据图象,回答当一次函数的值大于反比例函数的值时,x 的取值范围为________;
(3) 连接AO、BO,则△ABO的面积是_________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当S△ABC=15时,求该抛物线的表达式;
(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。请结合图象回答:若新函数的最小值大于﹣8,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com