精英家教网 > 初中数学 > 题目详情
如图,点A、C在反比例函数的图象上,B、D在x轴上,△OAB,△BCD均为正三角形,求点C的坐标?

【答案】分析:根据正三角形的性质得出OE=EB=1,设BF=m,进而表示出C点的坐标,代入解析式即可得出m的值,进而得出C点的坐标.
解答:解:作AE⊥OB于E,CF⊥BD于F,
∵△OAB,△BCD均为正三角形,A在反比例函数y=
设A的横坐标是-1,
则A的纵坐标是-
∴OE=1,OA=2OE=2,AE=
∴易求OE=EB=1,设BF=m,

代入得:
m2+2m-1=0,
解得:m=-1±
∵m>0,
∴m=-1+
∴点C的坐标为:
点评:此题主要考查了反比例函数的综合题运用正三角形的性质以及点的坐标特点,同学们应注重灵活应用综合处理函数问题这是中考中重点题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c经过点A(1,2)、B(2,1)和C(-2,-1)三点.
(1)求抛物线的解析式;
(2)反比例函数y=
k
x
的图象的一个分支经过点C,并且另个分支与抛物线在第一象限相交.
①求出k的值;
②反比函数y=
k
x
的图象是否经过点A和点B,试说明理由;
③若点P(a,b)是反比例函数y=
k
x
在第三象限的图象上的一个动点,连接AB、PA、PB,请问是否存在这样的一点P使△PAB的面积为3?如果存在,试求出所有符合条件的点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△P1OA1,△P2A1A2,△P3A2A3,…,是等腰直角三角形,点P1,P2,P3,…,在反比列函数y=
4x
的图象上,斜边OA1,A1A2,A2A3,…都在x轴上,则点A2的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.反比倒函数y=
kx
的图象与一次函散y=mx+b的图象交于两点A(1,3),B(n,-1).一精英家教网次函数y=mx+b的图象与x轴交于点C.
(1)求反比例函数与一次函数的函数关系式;
(2)求△AC0的面积;
(3)在反比例函数的图象上找点P,使得点A,O,P构成等腰三角形,直接写出两个满足该条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△P1OA1、△P2A1A2、△P3A2A3、…、△P100A99A100是等腰直角三角形,点P1、P2、P3、…、P100在反比列函数y=
4x
的图象上,斜边OA1、A1A2、A2A3、…、A99A100都在x轴上,则点A100的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数y=
k
x
图象上点B处.
(1)求反比函数的解析式;
(2)如图2,直线OB与反比例函数图象交于另一点C,在x轴上是否存在点D,使△DBC是等腰三角形?若不存在,请说明不存在的理由;如果存在,请求所有符合条件的点D的坐标;
(3)如图3,直线y=-x+
2
与x轴、y轴分别交于点E、F,点P为反比例函数在第一象限图象上一动点,PG⊥x轴于G,交线段EF于M,PH⊥y轴于H,交线段EF于N.当点P运动时,∠MON的度数是否改变?如果改变,试说明理由;如果不变,请求其度数.

查看答案和解析>>

同步练习册答案