分析 首先证明△AOE≌△COF可得EO=FO,再由AO=CO,可得四边形AECF为平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得出结论.
解答 证明:∵O是AC的中点,
∴AO=CO,
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠EAO=∠FCO.
在△AOE与△COF中,$\left\{\begin{array}{l}{∠EAO=∠FCO}&{\;}\\{AO=CO}&{\;}\\{∠AOE=∠COF}&{\;}\end{array}\right.$,
∴△AOE≌△COF(ASA).
∴EO=FO,
∴四边形AECF为平行四边形,
又∵EF⊥AC,
∴四边形AECF为菱形.
点评 此题主要考查了菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com