精英家教网 > 初中数学 > 题目详情

【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线 经过B、C两点,顶点D在正方形内部.
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

【答案】
(1)

解:∵点D(m,n),

∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n


(2)

解:点D有一条特征线是y=x+1,

∴n﹣m=1,

∴n=m+1

∵抛物线解析式为

∴y= (x﹣m)2+m+1,

∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),

∴B(2m,2m),

(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;

∴D(2,3),

∴抛物线解析式为y= (x﹣2)2+3


(3)

解:如图,当点A′在平行于y轴的D点的特征线时,

根据题意可得,D(2,3),

∴OA′=OA=4,OM=2,

∴∠A′OM=60°,

∴∠A′OP=∠AOP=30°,

∴MN=

∴抛物线需要向下平移的距离=3﹣ =

乳头,当点A′在平行于x轴的D点的特征线时,

∵顶点落在OP上,

∴A′与D重合,

∴A′(2,3),

设P(4,c)(c>0),

由折叠有,PD=PA,

=c,

∴c=

∴P(4,

∴直线OP解析式为y=

∴N(2, ),

∴抛物线需要向下平移的距离=3﹣ =

即:抛物线向下平移 距离,其顶点落在OP上


【解析】(1)根据特征线直接求出点D的特征线;
(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;
(3)分平行于x轴和y轴两种情况,由折叠的性质计算即可.此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,特征线的理解,解本题的关键是用正方形的性质求出点D的坐标.
【考点精析】掌握正方形的性质和翻折变换(折叠问题)是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+m的图象与反比例函数y= 的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).
(1)求m及k的值;
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤ 的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P、Q分别是边长为4cm的等边△ABCAB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第秒或第秒时,△PBQ为直角三角形,正确的有几个 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=RtAB=5cmBC=3cm,若动点P从点C开始,按CABC的路径运动,且速度为每秒1cm,设出发的时间为t秒.

1)出发2秒后,求△ABP的周长.

2)问t满足什么条件时,△BCP为直角三角形?

3)另有一点Q,从点C开始,按CBAC的路径运动,且速度为每秒2cm,若PQ两点同时出发,当PQ中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.

(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在ABC中,AD,AE分别是ABC的高和角平分线,若∠B=40°,EAD=15°.

求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.

(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1A1D1→……,白甲壳虫爬行的路线是ABBB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )

A. 0 B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为_____

查看答案和解析>>

同步练习册答案