精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F交⊙O于点E,连接DE、BE、BD、AE.
(1)求证:∠ACO=∠BED;
(2)连接CD,证明:直线CD是⊙O的切线;
(3)如果DE∥AB,AB=2cm,求四边形AEDB的面积.

(1)证明:∵AB是⊙O的直径,CA切⊙O于点A,
∴∠CAO=90°,
∴∠ACO+∠AOC=90°,
又∵OC⊥AD,
∴∠OFA=90°,
∴∠AOC+∠BAD=90°,
∴∠ACO=∠BAD,
又∵∠BED=∠BAD,
∴∠ACO=∠BED;

(2)连接CD、OD,
∵OC⊥AD,
=
∴∠DOC=∠AOC,
在△OAC和△ODC中,

∴△OAC≌△ODC(SAS),
∴∠ODC=∠OAC,
又∵CA切⊙O于点A,
∴∠OAC=90°,
∴∠ODC=90°,
∴CD是⊙O的切线;

(3)∵OC⊥AD,
=
又∵DE∥AB,
∴∠BAD=∠EDA,
=
==
∴∠DBE=∠ABE=∠BAD,AE=BD=DE,
又∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠BAD=30°,
∴BD=AB=1cm,DE=1cm,
在Rt△ABD中,由勾股定理得:AD=
过点D作DH⊥AB于H,
∵∠HAD=30°,
∴DH=AD=
∴四边形AEDB的面积为:(DE+AB)•DH=×(1+2)×=(cm2).
分析:(1)由AB是⊙O的直径,AC切⊙O于点A,根据同角的余角相等,可得∠ACO=∠BAD,又由圆周角定理,可得∠BED=∠BAD,则可证得∠ACO=∠BED;
(2)首先连接OD,易证得△OAC≌△ODC,则可得∠ODC=∠OAC=90°,即可得直线CD是⊙O的切线;
(3)易证得==,∠DBE=∠ABE=∠BAD,AE=BD=DE,即可求得∠BAD=30°,则可求得BD,AD的长,继而可求得梯形AEDB的高,则可求得四边形AEDB的面积.
点评:此题考查了切线的性质与判定、全等三角形的判定与性质、圆周角定理、弧与弦的关系以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案