精英家教网 > 初中数学 > 题目详情
不解方程,判断关于x的方程x2-2(x-k)+k2=-3的根的情况.
考点:根的判别式
专题:计算题
分析:先把方程化为一般式,再计算判别式的值配方后得到△=-4(k+1)2-4,接着根据非负数的性质判断△<0,然后根据判别式的意义判断方程根的情况.
解答:解:x2-2x+k2+2k+3=0,
△=4-4(k2+2k+3)
=-4k2-8k-8
=-4(k+1)2-4,
∵4(k+1)2≥0,
∴-4(k+1)2-4<0,
∴方程无实数根.
点评:本题考查了利用一元二次方程根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

把4x3-xy2分解因式,如果正确的是(  )
A、x(4x2-y2
B、x(2x-y)2
C、x(2x+y)2
D、x(2x+y)(2x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACB≌△A′CB′,∠BCB′=35°,则∠ACA′的度数为(  )
A、35°B、40°
C、45°D、50°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰三角形的一个外角等于110°,则它的顶角度数是(  )度.
A、40B、70
C、40或70D、140

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)(-17)+24+(-53)+(+36);
(2)(-2
1
2
)+(+
5
6
)+(-0.5)+(+1
1
6
);
(3)1
7
8
÷(-3
3
4
)×(-3
1
3
);             
(4)(-
1
4
+
5
6
-
3
8
+
7
12
)×(-48);
(5)(-2)2+(4-7)÷
3
2
-|-1|;
(6)-14+(3-5)3-2×(-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下列材料:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),
3×4=
1
3
(3×4×5-2×3×4),
由以上三个等式相加,可得:1×2+2×3+3×4=
1
3
×3×4×5=20.
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程);
(2)1×2+2×3+3×4+…+n×(n+1)=
 

(3)1×2×3+2×3×4+3×4×5=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

不等式x+5≥3x的正整数解有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

点P,Q在线段AB上中点的同一侧,点P分AB为2:3,点Q分AB为3:4,若PQ=2cm,则AB的长为
 

查看答案和解析>>

同步练习册答案