【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD交CE于点G,连结BE.下列结论中: ①CE=BD; ②∠ADC=90°, ③ ④ ,正确的是( )
A. ①②③④ B. ①②③ C. ①④ D. ①③④
【答案】D
【解析】∵△ABC和△ADE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE.
在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE,
∴CE=BD,故①正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∴∠BCG+∠CBG=∠ACB+∠ABC=90°,
∴∠BCG=180°-(∠BCG+∠CBG)=90°,
∴BD⊥CE,
∴S四边形BCDE=BD·CE,故③正确;
∵在Rt△BCG中,由勾股定理得BC2=BG2+CG2,在Rt△DEG中,由勾股定理,得DE2=DG2+EG2,
∴BC2+DE2=BG2+CG2+DG2+EG2.
又∵在Rt△BGE中,由勾股定理,得BE2=BG2+EG2,在Rt△CDG中,由勾股定理,得CD2=CG2+DG2,
∴BE2+CD2=BG2+CG2+DG2+EG2,
∴BE2+CD2=BC2+CD2,故④正确.
②无法证明.
综上所述,正确结论有3个.
故选C.
科目:初中数学 来源: 题型:
【题目】有理数a既不是正数,也不是负数,b是最小的正整数,c表示下列一组数:-2,1.5,0,130%, ,860,-3.4中非正数的个数,则a+b+c等于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列从左到右的变形,其中是因式分解的是( )
A.2(a﹣b)=2a﹣2b
B.x2﹣2x+1=x(x﹣2)+1
C.(m+1)(m﹣1)=m2﹣1
D.3a(a﹣1)+(1﹣a)=(3a﹣1)(a﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面两个圆圈分别表示负数集合和整数集合,请在这两个圆圈内各填入六个数,其中有三个数既在负数集合内,又在整数集合内.这三个数应填在哪里?你能说出这两个圆圈的重叠部分表示什么数的集合吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD.
(1)写出图中与∠EOB互余的角;
(2)若∠AOF=30°,求∠BOE和∠DOF的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com