【题目】如图,点在以线段为直径的圆上,且,点在上,且于点,是线段的中点,连接、.
(1)若,,求的长;
(2)求证:.
【答案】(1)5 ; (2)见解析
【解析】
(1)利用圆周角定理和圆心角、弧、弦的关系得到∠ACB=90°,且AC=BC,则∠A=45°,再证明△ADE为等腰直角三角形,所以AE=DE=6,接着利用勾股定理计算出BC,然后根据直角三角形斜边上的中线性质得到EF的长;
(2)如图,连接CF,利用圆周角定理得到∠BED=∠AED=∠ACB=90°,再根据直角三角形斜边上的中线性质得CF=EF=FB=FD,利用圆的定义可判断B、C、D、E在以BD为直径的圆上,根据圆周角定理得到∠EFC=2∠EBC=90°,然后利用△EFC为等腰直角三角形得到.
解:(1)∵点在以线段为直径的圆上,且
∴,且
∵,,,
∴,
在中,
∵,,
∴,
又∵是线段的中点,
∴;
(2)如图,连接,
线段与之间的数量关系是;
∵,
∵点是的中点,
∴,
∵,,
∴,
同理,
∴,
即,
∴;
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.
(1)求一次函数与反比例函数的解析式;
(2)若点C'是点C关于y轴的对称点,请求出△ABC'的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.
(1)求证:△BDF≌△CDE;
(2)当ED与BC满足什么数量关系时,四边形BECF是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程。
(1)求证:无论k取何值,方程总有两个实数根;
(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为整数,求k的值。(本题10分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.
请根据图中信息,解决下列问题:
(1)两个班共有女生多少人?
(2)将频数分布直方图补充完整;
(3)求扇形统计图中部分所对应的扇形圆心角度数;
(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船在A处测得灯塔P在船的北偏东30°方向,轮船沿着北偏东60°方向航行16km后到达B处,这时灯塔P在船的北偏西75°方向.则灯塔P与B之间的距离等于___________km(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将2019个边长为l的正方形按如图所示的方式排列,点和点是正方形的顶点,连接分别交正方形的边于点,四边形的面积是,四边形的面积是,…,则为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边△ABC的边长为2,等边△DEF的边长为1,把△DEF放在△ABC中,使∠D与∠A重合,点E在AB边上,如图所示,此时点E是AB的中点,在△ABC内部将△DEF按照下列的方式旋转:绕点E顺时针旋转,使点F与点B重合,完成一次操作,此时点D是BC的中点,△DEF旋转了_____°;再绕点D顺时针旋转,使点E与点C重合,完成第二次操作;…每次绕△DEF的某个顶点连续旋转下去,第11次操作完成时,CD=___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com