精英家教网 > 初中数学 > 题目详情

【题目】如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,OP的长为( )

A. 3 B. 4 C. 3 D. 4

【答案】C

【解析】

OMABMONCDN,连接OBOD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.

OMABMONCDN,连接OBOD

由垂径定理,得
BM=AB=4,DN=CD=4

勾股定理得:OM=ON==3

∵弦ABCD互相垂直,

∴∠DPB=90°

OMABMONCDN

∴∠OMP=ONP=90°

∴四边形MONP是矩形,

OM=ON

四边形MONP是正方形,

OP==3

故选C..

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,点O是矩形ABCD的中心(对角线的交点),AB=4cm,AD=6cm.点M是边AB上的一动点,过点OONOM,交BC于点N,设AM=x,ON=y,今天我们将根据学习函数的经验,研究函数值y随自变量x的变化而变化的规律.

下面是某同学做的一部分研究结果,请你一起参与解答:

(1)自变量x的取值范围是______

(2)通过计算,得到了xy的几组值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

y/cm

2.40

2.24

2.11

2.03

__

__

2.11

2.24

2.40

请你补全表格(说明:补全表格时相关数值保留两位小数,参考数据:3.04,6.09)

(3)在如图2所示的平面直角坐标系中,画出该函数的大致图象.

(4)根据图象,请写出该函数的一条性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加(  )

A. 1 m B. 2 m C. 3 m D. 6 m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点COB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接与⊙OAB是直径,⊙O的切线PCBA的延长线于点POF∥BCACACE,交PC于点F,连接AF

1)判断AF⊙O的位置关系并说明理由;

2)若⊙O的半径为4AF=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45° BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .

A.8B.10C.4D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC=60°,∠ACB=50°,延长CB至点D,使DB=BA,延长BC至点E,使CE=CA,连接ADAE. 求∠DAE的度数

.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到ABD.

(1)求直线AB的解析式;

(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;

(3)是否存在点P,使OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A、B⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥ABAB的延长线于D.

(1)求证:CD⊙O的切线;

(2)E的中点,F⊙O上一点,EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.

查看答案和解析>>

同步练习册答案