精英家教网 > 初中数学 > 题目详情
(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE。

(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由。
(1)见解析;(2)24cm;(3)存在,过E作EP⊥AD交AC于P,则P就是所求的点,证明见解析.

试题分析:(1)由四边形ABCD是矩形与折叠的性质,易证得△AOE≌△COF,即可得AE=CF,则可证得四边形AFCE是平行四边形,又由AC⊥EF,则可证得四边形AFCE是菱形;
由已知可得:S△ABF=AB•BF=24cm2,则可得AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),则可求得AB+BF的值,继而求得△ABF的周长.
过E作EP⊥AD交AC于P,则P就是所求的点,首先证明四边形AFCE是菱形,然后根据题干条件证明△AOE∽△AEP,列出关系式.
试题解析:
(1)∵四边形ABCD是矩形,
∴AD∥BC,∴∠EAO=∠FCO,
由折叠的性质可得:OA=OC,AC⊥EF,
在△AOE和△COF中,
 ,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四边形AFCE是平行四边形,
∵AC⊥EF,
∴四边形AFCE是菱形;
(2)∵四边形AFCE是菱形,
∴AF=AE=10cm,
∵四边形ABCD是矩形,
∴∠B=90°,
∴S△ABF=AB•BF=24cm2
∴AB•BF=48(cm2),
∴AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),
∴AB+BF=14(cm)
∴△ABF的周长为:AB+BF+AF=14+10=24(cm).
(3)证明:过E作EP⊥AD交AC于P,则P就是所求的点.
当顶点A与C重合时,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵在平行四边形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
∴△AOE≌△COF,
∴OE=OF
∴四边形AFCE是菱形.
∴∠AOE=90°,又∠EAO=∠EAP,
由作法得∠AEP=90°,
∴△AOE∽△AEP,
,则AE2=A0•AP,
∵四边形AFCE是菱形,
∴AO=AC,
∴AE2=AC•AP,
∴2AE2=AC•AP.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),

解答下列问题:
(1)当为何值时,△BPQ为直角三角形;
(2)设△BPQ的面积为S(cm2),求S与的函数关系式;
(3)作QR∥BA交AC于点R,连结PR,当为何值时,△APR∽△PRQ ?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).

(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为_________
②当AC=3,BC=4时,AD的长为_________
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,CE=5,M是BC边上的中点,动点P从点A出发,沿AB边以每秒1个单位长度的速度向终点B运动,连结PM.设动点P的运动时间是t秒.

(1)求线段AE的长;
(2)当△ADE与△PBM相似时,求t的值;
(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是(  )
A.(-2,1)B.(-8,4)
C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的一元二次方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是               (注:只需写出一个正确答案即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四组数中,能组成比例的是(   ).
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,则___________.

查看答案和解析>>

同步练习册答案