精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点是一次函数图象上两点,它们的横坐标分别为其中,过点分别作轴的平行线,交抛物线于点

1)若的值;

2)点是抛物线上的一点,求面积的最小值.

【答案】1;(2的最小值为

【解析】

1)利用函数图象上点的坐标特征用a表示点AB的坐标以及点CD的坐标,再用a表示ADCB的长,根据AD=BC,列方程即可求解;

2)作出如图的辅助线,设点E),求得点M的坐标为(),再求得EM,根据得到二次函数,利用二次函数的性质即可求解.

1)∵点AB是一次函数图象上两点,它们的横坐标分别为

∴点A的坐标为(aa),点B的坐标为(a+3a+3),

x=a,代入得:

x=a+3,代入得:

∴点D的坐标为(),点C的坐标为(),

AD=

CB=()

AD=BC

解得:

2)设点E),过EEM垂直于轴交AB于点M,作BFEMAGEM,垂足分别为FG,如图:

∵点M在直线上,

∴点M的坐标为(),

EM

∴当时,的最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】新冠肺炎疫情期间,我市对学生进行了停课不停学的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.

1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?

2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实疫情期间的垃圾分类,树立全面环保意识,某校举行了“垃圾分类,绿色环保”知识竞赛活动,根据学生的成绩划分为四个等级,并绘制了不完整的两种统计图:

根据图中提供的信息,回答下列问题:

1)参加知识竞赛的学生共有______人,并把条形统计图补充完整;

2)扇形统计图中,____________等级对应的圆心角为______度;

3)小明是四名获等级的学生中的一位,学校将从获等级的学生中任选取2人,参加市举办的知识竞赛,请用列表法或画树状图,求小明被选中参加区知识竞赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=10BC=15tanA=PAD边上任意一点,连结PB,将PB绕点P逆时针旋转90°得到线段PQ.若点Q恰好落在平行四边形ABCD的边所在的直线上,则PB旋转到PQ所扫过的面积____(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角标系中,抛物线Cyx轴交于AB两点(点A在点B的左侧),与y轴交于点C,点Dy轴正半轴上一点.且满足ODOC,连接BD

1)如图1,点P为抛物线上位于x轴下方一点,连接PBPD,当SPBD最大时,连接AP,以PB为边向上作正BPQ,连接AQ,点M与点N为直线AQ上的两点,MN2且点N位于M点下方,连接DN,求DN+MN+AM的最小值

2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将BOE绕着点A逆时针旋转60°得到B′O′E′,将抛物线y沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′x轴的右交点记为点F,连接E′FB′FR为线段E’F上的一点,连接B′R,将B′E′R沿着B′R翻折后与B′E′F重合部分记为B′RT,在平面内找一个点S,使得以B′RTS为顶点的四边形为矩形,求点S的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形的点坐标为,点轴上,点轴上.点是边上的动点,连接,作点关于线段的对称点.已知一条抛物线经过三点,且点恰好是抛物线的顶点,则的值为()

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明对教材课题学习中的用一张正方形折出一个正八边形的问题进行了认真地探索.他先把正方形沿对角线对折,再把对折,使点落在上,记为点.然后沿的中垂线折叠,得到折痕,如图1,类似地,折出其余三条折痕,得到八边形,如图2

1)求证:是等腰直角三角形.

2)若,求的长.(用含的代数式表示)

3)我们把八条边长相等,八个内角都相等的八边形叫做正八边形,试说明八边形是正八边形,请把过程补充完整.

解:理由如下:

同理可得:

同理可得:

∴八边形是正八边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点EAD边上一点,AEED12,连接ACBE交于点F.SAEF1,则S四边形CDEF_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作发现:如图,已知ABCADE均为等腰三角形,ABACADAE,将这两个三角形放置在一起,使点BDE在同一直线上,连接CE

1)如图1,若∠ABC=∠ACB=∠ADE=∠AED55°,求证:BAD≌△CAE

2)在(1)的条件下,求∠BEC的度数;

拓广探索:(3)如图2,若∠CAB=∠EAD120°BD4CFBCEBE边上的高,请直接写出EF的长度.

查看答案和解析>>

同步练习册答案