精英家教网 > 初中数学 > 题目详情
如图,已知P是正方形ABCD边BC上一点,BP=3PC,Q是CD的中点,
(1)求证:△ADQ∽△QCP;
(2)若AB=10,连结BD交AP于点M,交AQ于点N,求BM,QN的长。
解:(1)证明:在正方形ABCD中,BP=3PC,Q是CD的中点,
得PC=-BC,CQ=DQ=CD,且BC=CD=AD
∴PC/DQ=CQ/AD=1/2且∠PCQ=∠ADQ=90°,△PCQ∽△ADQ;
(2)由△BMP∽△AMD可知BM/DM=BP/AD=3/4,
又∵BD=AB=10
∴BM=BD=
同理QN=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知P是正方形ABCD内一点,要使△APD≌△BPC,只需增加的一个条件是
PA=PB

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.
(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?
(2)求出PG的长度;
(3)请你猜想△PGC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知ABCD是正方形,以CD为一边向CD两旁作等边三角形PCD和等边三角形QCD,那么tan∠PQB的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知P是正方形ABCD内一点,△PBC是等边三角形,若△PAD的外接圆半径为a,则正方形ABCD边长为(
A、
1
2
B、
3
2
a
C、a
D、
2
a

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知E是正方形ABCD的边CD的中点,点F在边CD上,且∠BAE=∠FAE,
求证:AF=AD+CF.

查看答案和解析>>

同步练习册答案