精英家教网 > 初中数学 > 题目详情
精英家教网如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为(  )
A、3
B、
3
C、6
D、2
3
分析:要求AB的值,就要先求MB的值,这可根据勾股定理得出.
解答:解:连接BD交AC于O,精英家教网
如图:∵四边形ABCD是菱形,
∴B与D关于直线AC对称,
∴连接DM交AC于P,
则点P即为所求,
BP+PM=PD+PM=DM,
即DM就是PM+PB的最小值(根据的是两点之间线段最短),
∵∠DAB=60°,
∴AD=AB=BD,
∵M是AB的中点,
∴DM⊥AB,
∵PM+PB=3,
∴DM=3,
∴AB=AD=
DM
sin60°
=
3
3
2
=2
3

故选D.
点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案