【题目】如图,在正方形中,是上的点,且,是的中点.
(1)与是否相似?为什么?
(2)与的关系是什么?请说明理由.
【答案】(1)相似,理由见解析;(2)且⊥,理由见解析
【解析】
(1)在所要求证的两个三角形中,已知的等量条件为:∠D=∠C=90°,若证明两三角形相似,可证两个三角形的对应直角边成比例;
(2)AQ=2PQ,且AQ⊥PQ.根据相似三角形的对应边成比例即可求得AQ与PQ的数量关系;根据相似三角形的对应角相等即可证得AQ与PQ的位置关系.
(1)证明:∵四边形ABCD是正方形,
∴AD=CD=BC,∠C=∠D=90°;
又∵Q是CD中点,
∴CQ=DQ=AD;
∵BP=3PC,
∴CP=BC=AD,
∴,
又∵∠C=∠D=90°,
∴△ADQ∽△QCP;
(2)AQ=2PQ,且AQ⊥PQ.理由如下:
由(1)知,△ADQ∽△QCP,,
则,
∴AQ=2PQ;
∵△ADQ∽△QCP,
∴∠AQD=∠QPC,∠DAQ=∠PQC,
∴∠PQC+∠DQA=DAQ+AQD=90°,
∴AQ⊥QP.
故与的关系是:且⊥.
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点和 ,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 45 | 50 | 60 |
销售量y(千克) | 110 | 100 | 80 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=+bx+c的图象交x轴于点A,B,交y轴于点C(0,﹣2),一次函数y=x+n的图象经过A,C两点,点P为直线AC下方二次函数图象上的一个动点,直线BP交线段AC于点E,PF⊥AC于点F.
(1)求二次函数的解析式;
(2)求的最大值及此时点P的坐标;
(3)连接CP,是否存在点P,使得Rt△CPF中的一个锐角恰好等于2∠BAC?若存在,请直接写出点P的坐标;否则,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是⊙O的内接三角形,AB为直径,AC=BC,D、E是⊙O上两点,连接AD、DE、AE.
(1)如图1,求证:∠AED﹣∠CAD=45°;
(2)如图2,若DE⊥AB于点H,过点D作DG⊥AC于点G,过点E作EK⊥AD于点K,交AC于点F,求证:AF=2DG;
(3)如图3,在(2)的条件下,连接DF、CD,若∠CDF=∠GAD,DK=3,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=1,AB=.将矩形ABCD绕着点B顺时针旋转90°得到矩形.联结,分别交边CD,于E、F.如果AE=,那么= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数y=x2-4x+3.
(1)将y=x2-4x+3化成的形式;
(2)求出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,y<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工处理这种材料时,材料温度是时间的函数下面是小明同学研究该函数的过程,把它补充完整:
在这个函数关系中,自变量x的取值范围是______.
如表记录了17min内10个时间点材料温度y随时间x变化的情况:
时间 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
温度 | 15 | 24 | 42 | 60 | m |
上表中m的值为______.
如图,在平面直角坐标系xOy中,已经描出了上表中的部分点根据描出的点,画出该函数的图象.
根据列出的表格和所画的函数图象,可以得到,当时,y与x之间的函数表达式为______,当时,y与x之间的函数表达式为______.
根据工艺的要求,当材料的温度不低于时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为______min.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com