分析 (1)先证出∠ACE=∠CBG,再由ASA证明△ACE≌△CBG,得出对应边相等即可;
(2)先证出∠CEB=∠CMA,再由AAS证明△BCE≌△ACM.
解答 解:(1)∵点D是AB的中点,AC=BC,∠ACB=90°,
∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.
∴∠CAE=∠BCG.
又BF⊥CE,
∴∠CBG+∠BCF=90°.
又∠ACE+∠BCF=90°,
∴∠ACE=∠CBG.
在△AEC和△CGB中,
$\left\{\begin{array}{l}{∠CAE=∠BCG}\\{AC=BC}\\{∠ACE=∠CBG}\end{array}\right.$
∴△AEC≌△CGB.
∴AE=CG.
(2)∵CH⊥HM,CD⊥ED,
∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.
∴∠CMA=∠BEC.
又AC=BC,∠ACM=∠CBE=45°,
在△BCE和△CAM中
$\left\{\begin{array}{l}{∠BEC=∠CMA}\\{∠CBE=∠ACM}\\{BC=AC}\end{array}\right.$
∴∠BCE≌△CAM(AAS).
点评 本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{a}{80%}$元 | B. | 80%a元 | C. | 20%a元 | D. | $\frac{a}{20%}$元 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com