精英家教网 > 初中数学 > 题目详情

过点A(0,1)作一条与x轴平行的直线与抛物线y=4x2相交于点M,N,则M,N两点的坐标分别为________.

答案:
解析:

(,1),(-,1)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,
(1)求BE的长.
(2)如果过点C在△ABC外作一条直线l,分别作AD⊥l于D,BE⊥l于E,那么AD、BE、DE之间存在怎样的数量关系?证明你的结论.(要画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为
89
10
a
的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);
(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是
 
,给出证明,并通过计算说明此时铁片都能穿过圆孔;
(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;
①当BE=DF=
1
5
a
时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4

(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5

②在AB上取一点P,可设AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历下区一模)如图,设直线l2:y=-2x+8与x轴相交于点N,与直线l1相交于点E(1,a),双曲线y=
k
x
(x>0)经过点E,且与直线l1相交于另一点F(9,
2
3
).
(1)求双曲线解析式及直线l1的解析式;
(2)点P在直线l1上,过点F向y轴作垂线,垂足为点B,交直线l2于点H,过点P向x轴作垂线,垂足为点D,与FB交于点C.
①请直接写出当线段PH与线段PN的差最大时点P的坐标;
②当以P、B、C三点为顶点的三角形与△AMO相似时,求点P的坐标.

查看答案和解析>>

同步练习册答案