精英家教网 > 初中数学 > 题目详情
如图,等腰梯形ABCD中,ADBC,∠DBC=45°,翻折梯形ABCD,使点B与点D重合,折痕分别交边AB、BC于点F、E,若AD=2,BC=8.
(1)求BE的长;
(2)求∠CDE的正切值.
(1)∵△DFE是△BFE翻折而成,
∴△BFE≌△DFE,
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°
∴∠DEB=90度.即DE⊥BC.(1分)
在等腰梯形ABCD中,AD=2,BC=8,
∴EC=
1
2
(BC-AD)=3.
∴BE=BC-EC=5;(3分)

(2)由(1)得,DE=BE=5.
在△DEC中,∠DEC=90°,DE=5,EC=3,
所以tan∠CDE=
EC
ED
=
3
5
.(5分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,梯形ABCD中,ADBC,∠B=70°,∠C=40°,若AD=3cm,BC=10cm,则CD等于______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在等腰梯形ABCD中,ADBC,直线MN是梯形的对称轴,P是MN上的一点.直线BP交直线DC于F,交CE于E,且CEAB.
(1)若点P在梯形的内部,如图①.求证:BP2=PE•PF;
(2)若点P在梯形的外部,如图②,那么(1)的结论是否成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在梯形ABCD中,ABCD,AD=BC,E是AB的中点,求证:ED=EC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在梯形ABCD中,ADBC.AB=DC=AD=6,∠ABC=60°,点E、F分别在AD、DC上(点E与A、D不重合);且∠BEF=120°,设AE=x,DF=y.
(1)求BC边的长;
(2)求出y关于x的函数关系;
(3)利用配方法求x为何值时,y有最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在四边形ABCD中,ADBC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s的速度运动,P、Q别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒.
(1)当t为何值时,四边形ABQP为矩形?
(2)当t为何值时,四边形PQCD为平行四边形?
(3)当t为何值时,四边形PQCD为等腰梯形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,∠B=90°,AD=6,BC=8,AB=3
3
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

梯形ABCD中ADBC,E是AB的中点,过E作两底的平行线交DC于F,则下面结论错误的是(  )
A.EF平分线段AC
B.梯形上下底间任意两点的连线段被EF平分
C.梯形EBCF与梯形AEFD周长之差的绝对值等于梯形两底之差的绝对值
D.梯形EBCF的面积比梯形AEFD的面积大

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

P、Q二人沿直角梯形ABCD道路晨练,如图,ADBC,∠B=90°,AD=240m,BC=270m,P从点A开始沿AD边向点D以1m/s的速度行走,Q从点C开始沿CB边向点B以3m/s的速度跑步.
(1)P、Q二人分别从A、C两点同时出发多少时间时,四边形PQCD(P、Q二人所在的位置为P、Q点)是平行四边形?
(2)添加一个什么条件时,P、Q二人分别从A、C两点同时出发,在某时刻四边形PQCD是菱形?说明理由.
(3)P、Q二人分别从A、C两点同时出发多少时间时,四边形PQCD是等腰梯形?
(4)若添加AB=50
23
m,P、Q二人分别从A、C两点同时出发多少时间时,△BPQ为等腰三角形?(第4小题只要求写出答案即可.)

查看答案和解析>>

同步练习册答案