【题目】某商厦分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果进价的1.2倍,所以进回的甲糖果的重量比乙糖果少10kg.
(1)甲、乙两种糖果的进价分别是多少?
(2)若两种糖果的销售利润率均为10%,则两种糖果的售价分别是多少?
(3)如果将两种糖果混合在一起销售,总利润不变,那么混合后的糖果单价应定为多少元?
【答案】(1)甲糖果的进价为12元/千克,乙糖果的进价为10/千克;(2)甲糖果的售价为13.2元/千克,乙糖果的售价为11元/千克;(3)混合后的糖果单价应定为12元.
【解析】
(1)设乙糖果的进价为x元,甲糖果的进价为1.2x元,列出分式方程即可;
(2)根据售价=进价+利润即可;
(3)用总售价÷总量即可.
解:(1)设乙糖果的进价为x元,甲糖果的进价为1.2x元.
根据题意得:=10,解得:x=10,
1.2x=1.2×10=12.
所以甲糖果的进价为12元/千克,乙糖果的进价为10/千克.
(2)甲糖果的售价=12×(1+10%)=13.2元/千克,乙糖果的售价为=10×(1+10%)=11元/千克.
所以甲糖果的售价为13.2元/千克,乙糖果的售价为11元/千克.
(3)合后的糖果单价=1200×(1+10%)÷()=12(元).
答:混合后的糖果单价应定为12元.
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形的底边长为,面积是, 腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离(米)与离家时间(分钟)之间的函数关系.下列说法中正确的个数是( )
(1)修车时间为15分钟;
(2)学校离家的距离为4000米;
(3)到达学校时共用时间为20分钟;
(4)自行车发生故障时离家距离为2000米.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某养殖户的养殖成本逐年增长,第一年的养殖成本为12万元,第3年的养殖成本为16万元.设养殖成本平均每年增长的百分率为x,则下面所列方程中正确的是( )
A. 12(1﹣x)2=16 B. 16(1﹣x)2=12 C. 16(1+x)2=12 D. 12(1+x)2=16
【答案】D
【解析】由题意可得:第二年的养殖成本为,
第三年的养殖成本为: ,
∴.
故选D.
【题型】单选题
【结束】
8
【题目】一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A,B,C的坐标分别为(a,0),(2,﹣4),(c,0),且a,c满足方程为二元一次方程.
(1)求A,C的坐标.
(2)若点D为y轴正半轴上的一个动点.
①如图1,∠AOD+∠ADO+∠DAO=180°,当AD∥BC时,∠ADO与∠ACB的平分线交于点P,求∠P的度数;
②如图2,连接BD,交x轴于点E.若S△ADE≤S△BCE成立.设动点D的坐标为(0,d),求d的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM ∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com