精英家教网 > 初中数学 > 题目详情
5.x与$\frac{2}{3}$的差的一半是正数,用不等式表示为$\frac{1}{2}$(x-$\frac{2}{3}$)>0.

分析 x与$\frac{2}{3}$的差即x-$\frac{2}{3}$,再根据“一半”即整体乘以$\frac{1}{2}$,正数即>0,据此列不等式.

解答 解:根据题意,可列不等式:$\frac{1}{2}$(x-$\frac{2}{3}$)>0,
故答案为$\frac{1}{2}$(x-$\frac{2}{3}$)>0.

点评 本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,找出合适的等量关系,列出不等式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4),矩形ABCD的顶点A与点O重合,AD,AB分别在x轴,y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①设以P、N、C、D为顶点的多边形面积为S,试问:S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
②当t=1时,射线AB上存在点Q,使△QME为直角三角形,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系内,双曲线:y=$\frac{k}{x}$(x>0)分别与直线OA:y=x和直线AB:y=-x+10,交于C,D两点,并且OC=3BD.
(1)求出双曲线的解析式;
(2)连结CD,求四边形OCDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,直角三角形OAB的顶点O在坐标原点,A(2,0),B(0,2$\sqrt{3}$),将△OAB沿y轴翻折,得△OCB.
(1)求OCB的度数;
(2)动点P在线段CA上从点C向点A运动,PD⊥BC于点D,把△PCD沿y轴翻折,得△QAE,设△ABC被△PCD和△QAE盖住部分的面积为S1,未被盖住的部分的面积为S2
①设CP=a(a>0),用含a的代数式分别表示S1,S2
②直接写出当S1=S2时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).
(1)在图中画出平移后的△A1B1C1
(2)直接写出△A1B1C1各顶点的坐标.A1(4,-2);B1(1,-4);C1(2,-1);
(3)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.定义:数学活动课上,陈老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
应用:(2)如图2,在Rt△PBC中,∠PCB=90°,BC=9,点A在BP边上,且AB=13.AD⊥PC,CD=12,若PC上存在符合条件的点M,使四边形ABCM为对等四边形,求出CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如果3.14×10n是一个5位整数,则n为4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.对角线互相垂直的四边形是菱形
B.矩形的对角线互相垂直
C.四边相等的四边形是菱形
D.一组对边平行的四边形是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD=$\sqrt{3}$.
(1)求∠C的度数;
(2)求证:BC是⊙O的切线;
(3)求阴影部分面积.

查看答案和解析>>

同步练习册答案